Metamath Proof Explorer


Theorem deceq2i

Description: Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015)

Ref Expression
Hypothesis deceq1i.1
|- A = B
Assertion deceq2i
|- ; C A = ; C B

Proof

Step Hyp Ref Expression
1 deceq1i.1
 |-  A = B
2 deceq2
 |-  ( A = B -> ; C A = ; C B )
3 1 2 ax-mp
 |-  ; C A = ; C B