Step |
Hyp |
Ref |
Expression |
1 |
|
decexp2.1 |
|- M e. NN0 |
2 |
|
decexp2.2 |
|- ( M + 2 ) = N |
3 |
|
2cn |
|- 2 e. CC |
4 |
|
2nn0 |
|- 2 e. NN0 |
5 |
4 1
|
nn0expcli |
|- ( 2 ^ M ) e. NN0 |
6 |
5
|
nn0cni |
|- ( 2 ^ M ) e. CC |
7 |
3 6
|
mulcli |
|- ( 2 x. ( 2 ^ M ) ) e. CC |
8 |
|
expp1 |
|- ( ( 2 e. CC /\ M e. NN0 ) -> ( 2 ^ ( M + 1 ) ) = ( ( 2 ^ M ) x. 2 ) ) |
9 |
3 1 8
|
mp2an |
|- ( 2 ^ ( M + 1 ) ) = ( ( 2 ^ M ) x. 2 ) |
10 |
6 3
|
mulcomi |
|- ( ( 2 ^ M ) x. 2 ) = ( 2 x. ( 2 ^ M ) ) |
11 |
9 10
|
eqtr2i |
|- ( 2 x. ( 2 ^ M ) ) = ( 2 ^ ( M + 1 ) ) |
12 |
11
|
oveq1i |
|- ( ( 2 x. ( 2 ^ M ) ) x. 2 ) = ( ( 2 ^ ( M + 1 ) ) x. 2 ) |
13 |
7 3 12
|
mulcomli |
|- ( 2 x. ( 2 x. ( 2 ^ M ) ) ) = ( ( 2 ^ ( M + 1 ) ) x. 2 ) |
14 |
5
|
decbin0 |
|- ( 4 x. ( 2 ^ M ) ) = ( 2 x. ( 2 x. ( 2 ^ M ) ) ) |
15 |
|
peano2nn0 |
|- ( M e. NN0 -> ( M + 1 ) e. NN0 ) |
16 |
1 15
|
ax-mp |
|- ( M + 1 ) e. NN0 |
17 |
|
expp1 |
|- ( ( 2 e. CC /\ ( M + 1 ) e. NN0 ) -> ( 2 ^ ( ( M + 1 ) + 1 ) ) = ( ( 2 ^ ( M + 1 ) ) x. 2 ) ) |
18 |
3 16 17
|
mp2an |
|- ( 2 ^ ( ( M + 1 ) + 1 ) ) = ( ( 2 ^ ( M + 1 ) ) x. 2 ) |
19 |
13 14 18
|
3eqtr4i |
|- ( 4 x. ( 2 ^ M ) ) = ( 2 ^ ( ( M + 1 ) + 1 ) ) |
20 |
|
4nn0 |
|- 4 e. NN0 |
21 |
20 5
|
nn0mulcli |
|- ( 4 x. ( 2 ^ M ) ) e. NN0 |
22 |
21
|
nn0cni |
|- ( 4 x. ( 2 ^ M ) ) e. CC |
23 |
22
|
addid1i |
|- ( ( 4 x. ( 2 ^ M ) ) + 0 ) = ( 4 x. ( 2 ^ M ) ) |
24 |
1
|
nn0cni |
|- M e. CC |
25 |
|
ax-1cn |
|- 1 e. CC |
26 |
24 25 25
|
addassi |
|- ( ( M + 1 ) + 1 ) = ( M + ( 1 + 1 ) ) |
27 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
28 |
27
|
oveq2i |
|- ( M + 2 ) = ( M + ( 1 + 1 ) ) |
29 |
26 28 2
|
3eqtr2ri |
|- N = ( ( M + 1 ) + 1 ) |
30 |
29
|
oveq2i |
|- ( 2 ^ N ) = ( 2 ^ ( ( M + 1 ) + 1 ) ) |
31 |
19 23 30
|
3eqtr4i |
|- ( ( 4 x. ( 2 ^ M ) ) + 0 ) = ( 2 ^ N ) |