Metamath Proof Explorer
		
		
		
		Description:  Comparing two decimal integers (unequal higher places).  (Contributed by AV, 8-Sep-2021)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | declt.a | |- A e. NN0 | 
					
						|  |  | declt.b | |- B e. NN0 | 
					
						|  |  | declth.c | |- C e. NN0 | 
					
						|  |  | declth.d | |- D e. NN0 | 
					
						|  |  | declth.e | |- C <_ 9 | 
					
						|  |  | declth.l | |- A < B | 
				
					|  | Assertion | declth | |- ; A C < ; B D | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | declt.a |  |-  A e. NN0 | 
						
							| 2 |  | declt.b |  |-  B e. NN0 | 
						
							| 3 |  | declth.c |  |-  C e. NN0 | 
						
							| 4 |  | declth.d |  |-  D e. NN0 | 
						
							| 5 |  | declth.e |  |-  C <_ 9 | 
						
							| 6 |  | declth.l |  |-  A < B | 
						
							| 7 | 3 5 | le9lt10 |  |-  C < ; 1 0 | 
						
							| 8 | 1 2 3 4 7 6 | decltc |  |-  ; A C < ; B D |