Metamath Proof Explorer


Theorem declti

Description: Comparing a digit to a decimal integer. (Contributed by Mario Carneiro, 18-Feb-2014) (Revised by AV, 6-Sep-2021)

Ref Expression
Hypotheses declti.a
|- A e. NN
declti.b
|- B e. NN0
declti.c
|- C e. NN0
declti.l
|- C < ; 1 0
Assertion declti
|- C < ; A B

Proof

Step Hyp Ref Expression
1 declti.a
 |-  A e. NN
2 declti.b
 |-  B e. NN0
3 declti.c
 |-  C e. NN0
4 declti.l
 |-  C < ; 1 0
5 10nn
 |-  ; 1 0 e. NN
6 5 1 2 3 4 numlti
 |-  C < ( ( ; 1 0 x. A ) + B )
7 dfdec10
 |-  ; A B = ( ( ; 1 0 x. A ) + B )
8 6 7 breqtrri
 |-  C < ; A B