Description: Perform a multiply-add of two numerals M and N against a fixed multiplicand P (no carry). (Contributed by Mario Carneiro, 18-Feb-2014) (Revised by AV, 6-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | decma.a | |- A e. NN0 | |
| decma.b | |- B e. NN0 | ||
| decma.c | |- C e. NN0 | ||
| decma.d | |- D e. NN0 | ||
| decma.m | |- M = ; A B | ||
| decma.n | |- N = ; C D | ||
| decma.p | |- P e. NN0 | ||
| decma.e | |- ( ( A x. P ) + C ) = E | ||
| decma.f | |- ( ( B x. P ) + D ) = F | ||
| Assertion | decma | |- ( ( M x. P ) + N ) = ; E F | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | decma.a | |- A e. NN0 | |
| 2 | decma.b | |- B e. NN0 | |
| 3 | decma.c | |- C e. NN0 | |
| 4 | decma.d | |- D e. NN0 | |
| 5 | decma.m | |- M = ; A B | |
| 6 | decma.n | |- N = ; C D | |
| 7 | decma.p | |- P e. NN0 | |
| 8 | decma.e | |- ( ( A x. P ) + C ) = E | |
| 9 | decma.f | |- ( ( B x. P ) + D ) = F | |
| 10 | 10nn0 | |- ; 1 0 e. NN0 | |
| 11 | dfdec10 | |- ; A B = ( ( ; 1 0 x. A ) + B ) | |
| 12 | 5 11 | eqtri | |- M = ( ( ; 1 0 x. A ) + B ) | 
| 13 | dfdec10 | |- ; C D = ( ( ; 1 0 x. C ) + D ) | |
| 14 | 6 13 | eqtri | |- N = ( ( ; 1 0 x. C ) + D ) | 
| 15 | 10 1 2 3 4 12 14 7 8 9 | numma | |- ( ( M x. P ) + N ) = ( ( ; 1 0 x. E ) + F ) | 
| 16 | dfdec10 | |- ; E F = ( ( ; 1 0 x. E ) + F ) | |
| 17 | 15 16 | eqtr4i | |- ( ( M x. P ) + N ) = ; E F |