Description: Perform a multiply-add of two numerals M and N against a fixed multiplicand P (with carry). (Contributed by Mario Carneiro, 18-Feb-2014) (Revised by AV, 6-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | decma.a | |- A e. NN0 |
|
decma.b | |- B e. NN0 |
||
decma.c | |- C e. NN0 |
||
decma.d | |- D e. NN0 |
||
decma.m | |- M = ; A B |
||
decma.n | |- N = ; C D |
||
decmac.p | |- P e. NN0 |
||
decmac.f | |- F e. NN0 |
||
decmac.g | |- G e. NN0 |
||
decmac.e | |- ( ( A x. P ) + ( C + G ) ) = E |
||
decmac.2 | |- ( ( B x. P ) + D ) = ; G F |
||
Assertion | decmac | |- ( ( M x. P ) + N ) = ; E F |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | decma.a | |- A e. NN0 |
|
2 | decma.b | |- B e. NN0 |
|
3 | decma.c | |- C e. NN0 |
|
4 | decma.d | |- D e. NN0 |
|
5 | decma.m | |- M = ; A B |
|
6 | decma.n | |- N = ; C D |
|
7 | decmac.p | |- P e. NN0 |
|
8 | decmac.f | |- F e. NN0 |
|
9 | decmac.g | |- G e. NN0 |
|
10 | decmac.e | |- ( ( A x. P ) + ( C + G ) ) = E |
|
11 | decmac.2 | |- ( ( B x. P ) + D ) = ; G F |
|
12 | 10nn0 | |- ; 1 0 e. NN0 |
|
13 | dfdec10 | |- ; A B = ( ( ; 1 0 x. A ) + B ) |
|
14 | 5 13 | eqtri | |- M = ( ( ; 1 0 x. A ) + B ) |
15 | dfdec10 | |- ; C D = ( ( ; 1 0 x. C ) + D ) |
|
16 | 6 15 | eqtri | |- N = ( ( ; 1 0 x. C ) + D ) |
17 | dfdec10 | |- ; G F = ( ( ; 1 0 x. G ) + F ) |
|
18 | 11 17 | eqtri | |- ( ( B x. P ) + D ) = ( ( ; 1 0 x. G ) + F ) |
19 | 12 1 2 3 4 14 16 7 8 9 10 18 | nummac | |- ( ( M x. P ) + N ) = ( ( ; 1 0 x. E ) + F ) |
20 | dfdec10 | |- ; E F = ( ( ; 1 0 x. E ) + F ) |
|
21 | 19 20 | eqtr4i | |- ( ( M x. P ) + N ) = ; E F |