Database REAL AND COMPLEX NUMBERS Integer sets Decimal arithmetic decmul1  
				
		 
		
			
		 
		Description:   The product of a numeral with a number (no carry).  (Contributed by AV , 22-Jul-2021)   (Revised by AV , 6-Sep-2021)   Remove hypothesis
         D e. NN0  .  (Revised by Steven Nguyen , 7-Dec-2022) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						decmul1.p |- P e. NN0  
					
						decmul1.a |- A e. NN0  
					
						decmul1.b |- B e. NN0  
					
						decmul1.n |- N = ; A B  
					
						decmul1.c |- ( A x. P ) = C  
					
						decmul1.d |- ( B x. P ) = D  
				
					Assertion 
					decmul1 |- ( N x. P ) = ; C D  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							decmul1.p  |-  P e. NN0  
						
							2 
								
							 
							decmul1.a  |-  A e. NN0  
						
							3 
								
							 
							decmul1.b  |-  B e. NN0  
						
							4 
								
							 
							decmul1.n  |-  N = ; A B  
						
							5 
								
							 
							decmul1.c  |-  ( A x. P ) = C  
						
							6 
								
							 
							decmul1.d  |-  ( B x. P ) = D  
						
							7 
								2  3 
							 
							deccl  |-  ; A B e. NN0  
						
							8 
								4  7 
							 
							eqeltri  |-  N e. NN0  
						
							9 
								8  1 
							 
							num0u  |-  ( N x. P ) = ( ( N x. P ) + 0 )  
						
							10 
								
							 
							0nn0  |-  0 e. NN0  
						
							11 
								3  1 
							 
							nn0mulcli  |-  ( B x. P ) e. NN0  
						
							12 
								11 
							 
							nn0cni  |-  ( B x. P ) e. CC  
						
							13 
								12 
							 
							addridi  |-  ( ( B x. P ) + 0 ) = ( B x. P )  
						
							14 
								13  6 
							 
							eqtri  |-  ( ( B x. P ) + 0 ) = D  
						
							15 
								2  3  10  4  1  5  14 
							 
							decrmanc  |-  ( ( N x. P ) + 0 ) = ; C D  
						
							16 
								9  15 
							 
							eqtri  |-  ( N x. P ) = ; C D