| Step |
Hyp |
Ref |
Expression |
| 1 |
|
decmul1.p |
|- P e. NN0 |
| 2 |
|
decmul1.a |
|- A e. NN0 |
| 3 |
|
decmul1.b |
|- B e. NN0 |
| 4 |
|
decmul1.n |
|- N = ; A B |
| 5 |
|
decmul1.0 |
|- D e. NN0 |
| 6 |
|
decmul1c.e |
|- E e. NN0 |
| 7 |
|
decmul1c.c |
|- ( ( A x. P ) + E ) = C |
| 8 |
|
decmul1c.2 |
|- ( B x. P ) = ; E D |
| 9 |
|
10nn0 |
|- ; 1 0 e. NN0 |
| 10 |
|
dfdec10 |
|- ; A B = ( ( ; 1 0 x. A ) + B ) |
| 11 |
4 10
|
eqtri |
|- N = ( ( ; 1 0 x. A ) + B ) |
| 12 |
|
dfdec10 |
|- ; E D = ( ( ; 1 0 x. E ) + D ) |
| 13 |
8 12
|
eqtri |
|- ( B x. P ) = ( ( ; 1 0 x. E ) + D ) |
| 14 |
9 1 2 3 11 5 6 7 13
|
nummul1c |
|- ( N x. P ) = ( ( ; 1 0 x. C ) + D ) |
| 15 |
|
dfdec10 |
|- ; C D = ( ( ; 1 0 x. C ) + D ) |
| 16 |
14 15
|
eqtr4i |
|- ( N x. P ) = ; C D |