Metamath Proof Explorer


Theorem decmulnc

Description: The product of a numeral with a number (no carry). (Contributed by AV, 15-Jun-2021)

Ref Expression
Hypotheses decmulnc.n
|- N e. NN0
decmulnc.a
|- A e. NN0
decmulnc.b
|- B e. NN0
Assertion decmulnc
|- ( N x. ; A B ) = ; ( N x. A ) ( N x. B )

Proof

Step Hyp Ref Expression
1 decmulnc.n
 |-  N e. NN0
2 decmulnc.a
 |-  A e. NN0
3 decmulnc.b
 |-  B e. NN0
4 eqid
 |-  ; A B = ; A B
5 1 3 nn0mulcli
 |-  ( N x. B ) e. NN0
6 0nn0
 |-  0 e. NN0
7 1 2 nn0mulcli
 |-  ( N x. A ) e. NN0
8 7 nn0cni
 |-  ( N x. A ) e. CC
9 8 addid1i
 |-  ( ( N x. A ) + 0 ) = ( N x. A )
10 5 dec0h
 |-  ( N x. B ) = ; 0 ( N x. B )
11 1 2 3 4 5 6 9 10 decmul2c
 |-  ( N x. ; A B ) = ; ( N x. A ) ( N x. B )