Metamath Proof Explorer


Theorem decnncl

Description: Closure for a numeral. (Contributed by Mario Carneiro, 17-Apr-2015) (Revised by AV, 6-Sep-2021)

Ref Expression
Hypotheses decnncl.1
|- A e. NN0
decnncl.2
|- B e. NN
Assertion decnncl
|- ; A B e. NN

Proof

Step Hyp Ref Expression
1 decnncl.1
 |-  A e. NN0
2 decnncl.2
 |-  B e. NN
3 dfdec10
 |-  ; A B = ( ( ; 1 0 x. A ) + B )
4 10nn0
 |-  ; 1 0 e. NN0
5 4 1 2 numnncl
 |-  ( ( ; 1 0 x. A ) + B ) e. NN
6 3 5 eqeltri
 |-  ; A B e. NN