| Step |
Hyp |
Ref |
Expression |
| 1 |
|
decpmate.p |
|- P = ( Poly1 ` R ) |
| 2 |
|
decpmate.c |
|- C = ( N Mat P ) |
| 3 |
|
decpmate.b |
|- B = ( Base ` C ) |
| 4 |
2 3
|
decpmatval |
|- ( ( M e. B /\ K e. NN0 ) -> ( M decompPMat K ) = ( i e. N , j e. N |-> ( ( coe1 ` ( i M j ) ) ` K ) ) ) |
| 5 |
4
|
3adant1 |
|- ( ( R e. V /\ M e. B /\ K e. NN0 ) -> ( M decompPMat K ) = ( i e. N , j e. N |-> ( ( coe1 ` ( i M j ) ) ` K ) ) ) |
| 6 |
5
|
adantr |
|- ( ( ( R e. V /\ M e. B /\ K e. NN0 ) /\ ( I e. N /\ J e. N ) ) -> ( M decompPMat K ) = ( i e. N , j e. N |-> ( ( coe1 ` ( i M j ) ) ` K ) ) ) |
| 7 |
|
oveq12 |
|- ( ( i = I /\ j = J ) -> ( i M j ) = ( I M J ) ) |
| 8 |
7
|
fveq2d |
|- ( ( i = I /\ j = J ) -> ( coe1 ` ( i M j ) ) = ( coe1 ` ( I M J ) ) ) |
| 9 |
8
|
fveq1d |
|- ( ( i = I /\ j = J ) -> ( ( coe1 ` ( i M j ) ) ` K ) = ( ( coe1 ` ( I M J ) ) ` K ) ) |
| 10 |
9
|
adantl |
|- ( ( ( ( R e. V /\ M e. B /\ K e. NN0 ) /\ ( I e. N /\ J e. N ) ) /\ ( i = I /\ j = J ) ) -> ( ( coe1 ` ( i M j ) ) ` K ) = ( ( coe1 ` ( I M J ) ) ` K ) ) |
| 11 |
|
simprl |
|- ( ( ( R e. V /\ M e. B /\ K e. NN0 ) /\ ( I e. N /\ J e. N ) ) -> I e. N ) |
| 12 |
|
simprr |
|- ( ( ( R e. V /\ M e. B /\ K e. NN0 ) /\ ( I e. N /\ J e. N ) ) -> J e. N ) |
| 13 |
|
fvexd |
|- ( ( ( R e. V /\ M e. B /\ K e. NN0 ) /\ ( I e. N /\ J e. N ) ) -> ( ( coe1 ` ( I M J ) ) ` K ) e. _V ) |
| 14 |
6 10 11 12 13
|
ovmpod |
|- ( ( ( R e. V /\ M e. B /\ K e. NN0 ) /\ ( I e. N /\ J e. N ) ) -> ( I ( M decompPMat K ) J ) = ( ( coe1 ` ( I M J ) ) ` K ) ) |