Metamath Proof Explorer


Theorem decpmate

Description: An entry of the matrix consisting of the coefficients in the entries of a polynomial matrix is the corresponding coefficient in the polynomial entry of the given matrix. (Contributed by AV, 28-Sep-2019) (Revised by AV, 2-Dec-2019)

Ref Expression
Hypotheses decpmate.p
|- P = ( Poly1 ` R )
decpmate.c
|- C = ( N Mat P )
decpmate.b
|- B = ( Base ` C )
Assertion decpmate
|- ( ( ( R e. V /\ M e. B /\ K e. NN0 ) /\ ( I e. N /\ J e. N ) ) -> ( I ( M decompPMat K ) J ) = ( ( coe1 ` ( I M J ) ) ` K ) )

Proof

Step Hyp Ref Expression
1 decpmate.p
 |-  P = ( Poly1 ` R )
2 decpmate.c
 |-  C = ( N Mat P )
3 decpmate.b
 |-  B = ( Base ` C )
4 2 3 decpmatval
 |-  ( ( M e. B /\ K e. NN0 ) -> ( M decompPMat K ) = ( i e. N , j e. N |-> ( ( coe1 ` ( i M j ) ) ` K ) ) )
5 4 3adant1
 |-  ( ( R e. V /\ M e. B /\ K e. NN0 ) -> ( M decompPMat K ) = ( i e. N , j e. N |-> ( ( coe1 ` ( i M j ) ) ` K ) ) )
6 5 adantr
 |-  ( ( ( R e. V /\ M e. B /\ K e. NN0 ) /\ ( I e. N /\ J e. N ) ) -> ( M decompPMat K ) = ( i e. N , j e. N |-> ( ( coe1 ` ( i M j ) ) ` K ) ) )
7 oveq12
 |-  ( ( i = I /\ j = J ) -> ( i M j ) = ( I M J ) )
8 7 fveq2d
 |-  ( ( i = I /\ j = J ) -> ( coe1 ` ( i M j ) ) = ( coe1 ` ( I M J ) ) )
9 8 fveq1d
 |-  ( ( i = I /\ j = J ) -> ( ( coe1 ` ( i M j ) ) ` K ) = ( ( coe1 ` ( I M J ) ) ` K ) )
10 9 adantl
 |-  ( ( ( ( R e. V /\ M e. B /\ K e. NN0 ) /\ ( I e. N /\ J e. N ) ) /\ ( i = I /\ j = J ) ) -> ( ( coe1 ` ( i M j ) ) ` K ) = ( ( coe1 ` ( I M J ) ) ` K ) )
11 simprl
 |-  ( ( ( R e. V /\ M e. B /\ K e. NN0 ) /\ ( I e. N /\ J e. N ) ) -> I e. N )
12 simprr
 |-  ( ( ( R e. V /\ M e. B /\ K e. NN0 ) /\ ( I e. N /\ J e. N ) ) -> J e. N )
13 fvexd
 |-  ( ( ( R e. V /\ M e. B /\ K e. NN0 ) /\ ( I e. N /\ J e. N ) ) -> ( ( coe1 ` ( I M J ) ) ` K ) e. _V )
14 6 10 11 12 13 ovmpod
 |-  ( ( ( R e. V /\ M e. B /\ K e. NN0 ) /\ ( I e. N /\ J e. N ) ) -> ( I ( M decompPMat K ) J ) = ( ( coe1 ` ( I M J ) ) ` K ) )