| Step |
Hyp |
Ref |
Expression |
| 1 |
|
decpmate.p |
|- P = ( Poly1 ` R ) |
| 2 |
|
decpmate.c |
|- C = ( N Mat P ) |
| 3 |
|
decpmate.b |
|- B = ( Base ` C ) |
| 4 |
|
decpmatcl.a |
|- A = ( N Mat R ) |
| 5 |
|
decpmatfsupp.0 |
|- .0. = ( 0g ` A ) |
| 6 |
5
|
fvexi |
|- .0. e. _V |
| 7 |
6
|
a1i |
|- ( ( R e. Ring /\ M e. B ) -> .0. e. _V ) |
| 8 |
|
ovexd |
|- ( ( ( R e. Ring /\ M e. B ) /\ k e. NN0 ) -> ( M decompPMat k ) e. _V ) |
| 9 |
|
oveq2 |
|- ( k = x -> ( M decompPMat k ) = ( M decompPMat x ) ) |
| 10 |
1 2 3 4 5
|
decpmataa0 |
|- ( ( R e. Ring /\ M e. B ) -> E. s e. NN0 A. x e. NN0 ( s < x -> ( M decompPMat x ) = .0. ) ) |
| 11 |
7 8 9 10
|
mptnn0fsuppd |
|- ( ( R e. Ring /\ M e. B ) -> ( k e. NN0 |-> ( M decompPMat k ) ) finSupp .0. ) |