Step |
Hyp |
Ref |
Expression |
1 |
|
decpmatid.p |
|- P = ( Poly1 ` R ) |
2 |
|
decpmatid.c |
|- C = ( N Mat P ) |
3 |
|
decpmatid.i |
|- I = ( 1r ` C ) |
4 |
|
decpmatid.a |
|- A = ( N Mat R ) |
5 |
|
decpmatid.0 |
|- .0. = ( 0g ` A ) |
6 |
|
decpmatid.1 |
|- .1. = ( 1r ` A ) |
7 |
1 2
|
pmatring |
|- ( ( N e. Fin /\ R e. Ring ) -> C e. Ring ) |
8 |
7
|
3adant3 |
|- ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> C e. Ring ) |
9 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
10 |
9 3
|
ringidcl |
|- ( C e. Ring -> I e. ( Base ` C ) ) |
11 |
8 10
|
syl |
|- ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> I e. ( Base ` C ) ) |
12 |
|
simp3 |
|- ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> K e. NN0 ) |
13 |
2 9
|
decpmatval |
|- ( ( I e. ( Base ` C ) /\ K e. NN0 ) -> ( I decompPMat K ) = ( i e. N , j e. N |-> ( ( coe1 ` ( i I j ) ) ` K ) ) ) |
14 |
11 12 13
|
syl2anc |
|- ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> ( I decompPMat K ) = ( i e. N , j e. N |-> ( ( coe1 ` ( i I j ) ) ` K ) ) ) |
15 |
|
eqid |
|- ( 0g ` P ) = ( 0g ` P ) |
16 |
|
eqid |
|- ( 1r ` P ) = ( 1r ` P ) |
17 |
|
simp11 |
|- ( ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) /\ i e. N /\ j e. N ) -> N e. Fin ) |
18 |
|
simp12 |
|- ( ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) /\ i e. N /\ j e. N ) -> R e. Ring ) |
19 |
|
simp2 |
|- ( ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) /\ i e. N /\ j e. N ) -> i e. N ) |
20 |
|
simp3 |
|- ( ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) /\ i e. N /\ j e. N ) -> j e. N ) |
21 |
1 2 15 16 17 18 19 20 3
|
pmat1ovd |
|- ( ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) /\ i e. N /\ j e. N ) -> ( i I j ) = if ( i = j , ( 1r ` P ) , ( 0g ` P ) ) ) |
22 |
21
|
fveq2d |
|- ( ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) /\ i e. N /\ j e. N ) -> ( coe1 ` ( i I j ) ) = ( coe1 ` if ( i = j , ( 1r ` P ) , ( 0g ` P ) ) ) ) |
23 |
22
|
fveq1d |
|- ( ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) /\ i e. N /\ j e. N ) -> ( ( coe1 ` ( i I j ) ) ` K ) = ( ( coe1 ` if ( i = j , ( 1r ` P ) , ( 0g ` P ) ) ) ` K ) ) |
24 |
|
fvif |
|- ( coe1 ` if ( i = j , ( 1r ` P ) , ( 0g ` P ) ) ) = if ( i = j , ( coe1 ` ( 1r ` P ) ) , ( coe1 ` ( 0g ` P ) ) ) |
25 |
24
|
fveq1i |
|- ( ( coe1 ` if ( i = j , ( 1r ` P ) , ( 0g ` P ) ) ) ` K ) = ( if ( i = j , ( coe1 ` ( 1r ` P ) ) , ( coe1 ` ( 0g ` P ) ) ) ` K ) |
26 |
|
iffv |
|- ( if ( i = j , ( coe1 ` ( 1r ` P ) ) , ( coe1 ` ( 0g ` P ) ) ) ` K ) = if ( i = j , ( ( coe1 ` ( 1r ` P ) ) ` K ) , ( ( coe1 ` ( 0g ` P ) ) ` K ) ) |
27 |
25 26
|
eqtri |
|- ( ( coe1 ` if ( i = j , ( 1r ` P ) , ( 0g ` P ) ) ) ` K ) = if ( i = j , ( ( coe1 ` ( 1r ` P ) ) ` K ) , ( ( coe1 ` ( 0g ` P ) ) ` K ) ) |
28 |
|
eqid |
|- ( var1 ` R ) = ( var1 ` R ) |
29 |
|
eqid |
|- ( mulGrp ` P ) = ( mulGrp ` P ) |
30 |
|
eqid |
|- ( .g ` ( mulGrp ` P ) ) = ( .g ` ( mulGrp ` P ) ) |
31 |
1 28 29 30
|
ply1idvr1 |
|- ( R e. Ring -> ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) = ( 1r ` P ) ) |
32 |
31
|
3ad2ant2 |
|- ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) = ( 1r ` P ) ) |
33 |
32
|
eqcomd |
|- ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> ( 1r ` P ) = ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) |
34 |
33
|
fveq2d |
|- ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> ( coe1 ` ( 1r ` P ) ) = ( coe1 ` ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) |
35 |
34
|
fveq1d |
|- ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> ( ( coe1 ` ( 1r ` P ) ) ` K ) = ( ( coe1 ` ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ` K ) ) |
36 |
1
|
ply1lmod |
|- ( R e. Ring -> P e. LMod ) |
37 |
36
|
3ad2ant2 |
|- ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> P e. LMod ) |
38 |
|
0nn0 |
|- 0 e. NN0 |
39 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
40 |
1 28 29 30 39
|
ply1moncl |
|- ( ( R e. Ring /\ 0 e. NN0 ) -> ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) e. ( Base ` P ) ) |
41 |
38 40
|
mpan2 |
|- ( R e. Ring -> ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) e. ( Base ` P ) ) |
42 |
41
|
3ad2ant2 |
|- ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) e. ( Base ` P ) ) |
43 |
|
eqid |
|- ( Scalar ` P ) = ( Scalar ` P ) |
44 |
|
eqid |
|- ( .s ` P ) = ( .s ` P ) |
45 |
|
eqid |
|- ( 1r ` ( Scalar ` P ) ) = ( 1r ` ( Scalar ` P ) ) |
46 |
39 43 44 45
|
lmodvs1 |
|- ( ( P e. LMod /\ ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) e. ( Base ` P ) ) -> ( ( 1r ` ( Scalar ` P ) ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) = ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) |
47 |
37 42 46
|
syl2anc |
|- ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> ( ( 1r ` ( Scalar ` P ) ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) = ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) |
48 |
47
|
eqcomd |
|- ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) = ( ( 1r ` ( Scalar ` P ) ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) |
49 |
48
|
fveq2d |
|- ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> ( coe1 ` ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) = ( coe1 ` ( ( 1r ` ( Scalar ` P ) ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) ) |
50 |
49
|
fveq1d |
|- ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> ( ( coe1 ` ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ` K ) = ( ( coe1 ` ( ( 1r ` ( Scalar ` P ) ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) ` K ) ) |
51 |
|
simp2 |
|- ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> R e. Ring ) |
52 |
1
|
ply1sca |
|- ( R e. Ring -> R = ( Scalar ` P ) ) |
53 |
52
|
3ad2ant2 |
|- ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> R = ( Scalar ` P ) ) |
54 |
53
|
eqcomd |
|- ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> ( Scalar ` P ) = R ) |
55 |
54
|
fveq2d |
|- ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> ( 1r ` ( Scalar ` P ) ) = ( 1r ` R ) ) |
56 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
57 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
58 |
56 57
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
59 |
58
|
3ad2ant2 |
|- ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> ( 1r ` R ) e. ( Base ` R ) ) |
60 |
55 59
|
eqeltrd |
|- ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> ( 1r ` ( Scalar ` P ) ) e. ( Base ` R ) ) |
61 |
38
|
a1i |
|- ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> 0 e. NN0 ) |
62 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
63 |
62 56 1 28 44 29 30
|
coe1tm |
|- ( ( R e. Ring /\ ( 1r ` ( Scalar ` P ) ) e. ( Base ` R ) /\ 0 e. NN0 ) -> ( coe1 ` ( ( 1r ` ( Scalar ` P ) ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) = ( k e. NN0 |-> if ( k = 0 , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) ) ) |
64 |
51 60 61 63
|
syl3anc |
|- ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> ( coe1 ` ( ( 1r ` ( Scalar ` P ) ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) = ( k e. NN0 |-> if ( k = 0 , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) ) ) |
65 |
|
eqeq1 |
|- ( k = K -> ( k = 0 <-> K = 0 ) ) |
66 |
65
|
ifbid |
|- ( k = K -> if ( k = 0 , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) = if ( K = 0 , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) ) |
67 |
66
|
adantl |
|- ( ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) /\ k = K ) -> if ( k = 0 , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) = if ( K = 0 , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) ) |
68 |
|
fvex |
|- ( 1r ` ( Scalar ` P ) ) e. _V |
69 |
|
fvex |
|- ( 0g ` R ) e. _V |
70 |
68 69
|
ifex |
|- if ( K = 0 , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) e. _V |
71 |
70
|
a1i |
|- ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> if ( K = 0 , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) e. _V ) |
72 |
64 67 12 71
|
fvmptd |
|- ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> ( ( coe1 ` ( ( 1r ` ( Scalar ` P ) ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) ` K ) = if ( K = 0 , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) ) |
73 |
35 50 72
|
3eqtrd |
|- ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> ( ( coe1 ` ( 1r ` P ) ) ` K ) = if ( K = 0 , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) ) |
74 |
1 15 62
|
coe1z |
|- ( R e. Ring -> ( coe1 ` ( 0g ` P ) ) = ( NN0 X. { ( 0g ` R ) } ) ) |
75 |
74
|
3ad2ant2 |
|- ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> ( coe1 ` ( 0g ` P ) ) = ( NN0 X. { ( 0g ` R ) } ) ) |
76 |
75
|
fveq1d |
|- ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> ( ( coe1 ` ( 0g ` P ) ) ` K ) = ( ( NN0 X. { ( 0g ` R ) } ) ` K ) ) |
77 |
69
|
a1i |
|- ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> ( 0g ` R ) e. _V ) |
78 |
|
fvconst2g |
|- ( ( ( 0g ` R ) e. _V /\ K e. NN0 ) -> ( ( NN0 X. { ( 0g ` R ) } ) ` K ) = ( 0g ` R ) ) |
79 |
77 12 78
|
syl2anc |
|- ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> ( ( NN0 X. { ( 0g ` R ) } ) ` K ) = ( 0g ` R ) ) |
80 |
76 79
|
eqtrd |
|- ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> ( ( coe1 ` ( 0g ` P ) ) ` K ) = ( 0g ` R ) ) |
81 |
73 80
|
ifeq12d |
|- ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> if ( i = j , ( ( coe1 ` ( 1r ` P ) ) ` K ) , ( ( coe1 ` ( 0g ` P ) ) ` K ) ) = if ( i = j , if ( K = 0 , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) , ( 0g ` R ) ) ) |
82 |
81
|
3ad2ant1 |
|- ( ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) /\ i e. N /\ j e. N ) -> if ( i = j , ( ( coe1 ` ( 1r ` P ) ) ` K ) , ( ( coe1 ` ( 0g ` P ) ) ` K ) ) = if ( i = j , if ( K = 0 , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) , ( 0g ` R ) ) ) |
83 |
27 82
|
eqtrid |
|- ( ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) /\ i e. N /\ j e. N ) -> ( ( coe1 ` if ( i = j , ( 1r ` P ) , ( 0g ` P ) ) ) ` K ) = if ( i = j , if ( K = 0 , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) , ( 0g ` R ) ) ) |
84 |
23 83
|
eqtrd |
|- ( ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) /\ i e. N /\ j e. N ) -> ( ( coe1 ` ( i I j ) ) ` K ) = if ( i = j , if ( K = 0 , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) , ( 0g ` R ) ) ) |
85 |
84
|
mpoeq3dva |
|- ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> ( i e. N , j e. N |-> ( ( coe1 ` ( i I j ) ) ` K ) ) = ( i e. N , j e. N |-> if ( i = j , if ( K = 0 , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) , ( 0g ` R ) ) ) ) |
86 |
53
|
adantl |
|- ( ( K = 0 /\ ( N e. Fin /\ R e. Ring /\ K e. NN0 ) ) -> R = ( Scalar ` P ) ) |
87 |
86
|
eqcomd |
|- ( ( K = 0 /\ ( N e. Fin /\ R e. Ring /\ K e. NN0 ) ) -> ( Scalar ` P ) = R ) |
88 |
87
|
fveq2d |
|- ( ( K = 0 /\ ( N e. Fin /\ R e. Ring /\ K e. NN0 ) ) -> ( 1r ` ( Scalar ` P ) ) = ( 1r ` R ) ) |
89 |
88
|
ifeq1d |
|- ( ( K = 0 /\ ( N e. Fin /\ R e. Ring /\ K e. NN0 ) ) -> if ( i = j , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) = if ( i = j , ( 1r ` R ) , ( 0g ` R ) ) ) |
90 |
89
|
mpoeq3dv |
|- ( ( K = 0 /\ ( N e. Fin /\ R e. Ring /\ K e. NN0 ) ) -> ( i e. N , j e. N |-> if ( i = j , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) ) = ( i e. N , j e. N |-> if ( i = j , ( 1r ` R ) , ( 0g ` R ) ) ) ) |
91 |
|
iftrue |
|- ( K = 0 -> if ( K = 0 , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) = ( 1r ` ( Scalar ` P ) ) ) |
92 |
91
|
ifeq1d |
|- ( K = 0 -> if ( i = j , if ( K = 0 , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) , ( 0g ` R ) ) = if ( i = j , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) ) |
93 |
92
|
adantr |
|- ( ( K = 0 /\ ( N e. Fin /\ R e. Ring /\ K e. NN0 ) ) -> if ( i = j , if ( K = 0 , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) , ( 0g ` R ) ) = if ( i = j , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) ) |
94 |
93
|
mpoeq3dv |
|- ( ( K = 0 /\ ( N e. Fin /\ R e. Ring /\ K e. NN0 ) ) -> ( i e. N , j e. N |-> if ( i = j , if ( K = 0 , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) , ( 0g ` R ) ) ) = ( i e. N , j e. N |-> if ( i = j , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) ) ) |
95 |
4 57 62
|
mat1 |
|- ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` A ) = ( i e. N , j e. N |-> if ( i = j , ( 1r ` R ) , ( 0g ` R ) ) ) ) |
96 |
6 95
|
eqtrid |
|- ( ( N e. Fin /\ R e. Ring ) -> .1. = ( i e. N , j e. N |-> if ( i = j , ( 1r ` R ) , ( 0g ` R ) ) ) ) |
97 |
96
|
3adant3 |
|- ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> .1. = ( i e. N , j e. N |-> if ( i = j , ( 1r ` R ) , ( 0g ` R ) ) ) ) |
98 |
97
|
adantl |
|- ( ( K = 0 /\ ( N e. Fin /\ R e. Ring /\ K e. NN0 ) ) -> .1. = ( i e. N , j e. N |-> if ( i = j , ( 1r ` R ) , ( 0g ` R ) ) ) ) |
99 |
90 94 98
|
3eqtr4d |
|- ( ( K = 0 /\ ( N e. Fin /\ R e. Ring /\ K e. NN0 ) ) -> ( i e. N , j e. N |-> if ( i = j , if ( K = 0 , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) , ( 0g ` R ) ) ) = .1. ) |
100 |
|
iftrue |
|- ( K = 0 -> if ( K = 0 , .1. , .0. ) = .1. ) |
101 |
100
|
eqcomd |
|- ( K = 0 -> .1. = if ( K = 0 , .1. , .0. ) ) |
102 |
101
|
adantr |
|- ( ( K = 0 /\ ( N e. Fin /\ R e. Ring /\ K e. NN0 ) ) -> .1. = if ( K = 0 , .1. , .0. ) ) |
103 |
99 102
|
eqtrd |
|- ( ( K = 0 /\ ( N e. Fin /\ R e. Ring /\ K e. NN0 ) ) -> ( i e. N , j e. N |-> if ( i = j , if ( K = 0 , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) , ( 0g ` R ) ) ) = if ( K = 0 , .1. , .0. ) ) |
104 |
|
ifid |
|- if ( i = j , ( 0g ` R ) , ( 0g ` R ) ) = ( 0g ` R ) |
105 |
104
|
a1i |
|- ( ( -. K = 0 /\ ( N e. Fin /\ R e. Ring /\ K e. NN0 ) ) -> if ( i = j , ( 0g ` R ) , ( 0g ` R ) ) = ( 0g ` R ) ) |
106 |
105
|
mpoeq3dv |
|- ( ( -. K = 0 /\ ( N e. Fin /\ R e. Ring /\ K e. NN0 ) ) -> ( i e. N , j e. N |-> if ( i = j , ( 0g ` R ) , ( 0g ` R ) ) ) = ( i e. N , j e. N |-> ( 0g ` R ) ) ) |
107 |
|
iffalse |
|- ( -. K = 0 -> if ( K = 0 , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) = ( 0g ` R ) ) |
108 |
107
|
adantr |
|- ( ( -. K = 0 /\ ( N e. Fin /\ R e. Ring /\ K e. NN0 ) ) -> if ( K = 0 , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) = ( 0g ` R ) ) |
109 |
108
|
ifeq1d |
|- ( ( -. K = 0 /\ ( N e. Fin /\ R e. Ring /\ K e. NN0 ) ) -> if ( i = j , if ( K = 0 , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) , ( 0g ` R ) ) = if ( i = j , ( 0g ` R ) , ( 0g ` R ) ) ) |
110 |
109
|
mpoeq3dv |
|- ( ( -. K = 0 /\ ( N e. Fin /\ R e. Ring /\ K e. NN0 ) ) -> ( i e. N , j e. N |-> if ( i = j , if ( K = 0 , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) , ( 0g ` R ) ) ) = ( i e. N , j e. N |-> if ( i = j , ( 0g ` R ) , ( 0g ` R ) ) ) ) |
111 |
|
3simpa |
|- ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> ( N e. Fin /\ R e. Ring ) ) |
112 |
111
|
adantl |
|- ( ( -. K = 0 /\ ( N e. Fin /\ R e. Ring /\ K e. NN0 ) ) -> ( N e. Fin /\ R e. Ring ) ) |
113 |
4 62
|
mat0op |
|- ( ( N e. Fin /\ R e. Ring ) -> ( 0g ` A ) = ( i e. N , j e. N |-> ( 0g ` R ) ) ) |
114 |
5 113
|
eqtrid |
|- ( ( N e. Fin /\ R e. Ring ) -> .0. = ( i e. N , j e. N |-> ( 0g ` R ) ) ) |
115 |
112 114
|
syl |
|- ( ( -. K = 0 /\ ( N e. Fin /\ R e. Ring /\ K e. NN0 ) ) -> .0. = ( i e. N , j e. N |-> ( 0g ` R ) ) ) |
116 |
106 110 115
|
3eqtr4d |
|- ( ( -. K = 0 /\ ( N e. Fin /\ R e. Ring /\ K e. NN0 ) ) -> ( i e. N , j e. N |-> if ( i = j , if ( K = 0 , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) , ( 0g ` R ) ) ) = .0. ) |
117 |
|
iffalse |
|- ( -. K = 0 -> if ( K = 0 , .1. , .0. ) = .0. ) |
118 |
117
|
eqcomd |
|- ( -. K = 0 -> .0. = if ( K = 0 , .1. , .0. ) ) |
119 |
118
|
adantr |
|- ( ( -. K = 0 /\ ( N e. Fin /\ R e. Ring /\ K e. NN0 ) ) -> .0. = if ( K = 0 , .1. , .0. ) ) |
120 |
116 119
|
eqtrd |
|- ( ( -. K = 0 /\ ( N e. Fin /\ R e. Ring /\ K e. NN0 ) ) -> ( i e. N , j e. N |-> if ( i = j , if ( K = 0 , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) , ( 0g ` R ) ) ) = if ( K = 0 , .1. , .0. ) ) |
121 |
103 120
|
pm2.61ian |
|- ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> ( i e. N , j e. N |-> if ( i = j , if ( K = 0 , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) , ( 0g ` R ) ) ) = if ( K = 0 , .1. , .0. ) ) |
122 |
14 85 121
|
3eqtrd |
|- ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> ( I decompPMat K ) = if ( K = 0 , .1. , .0. ) ) |