Metamath Proof Explorer


Theorem decpmatval

Description: The matrix consisting of the coefficients in the polynomial entries of a polynomial matrix for the same power, general version for arbitrary matrices. (Contributed by AV, 28-Sep-2019) (Revised by AV, 2-Dec-2019)

Ref Expression
Hypotheses decpmatval.a
|- A = ( N Mat R )
decpmatval.b
|- B = ( Base ` A )
Assertion decpmatval
|- ( ( M e. B /\ K e. NN0 ) -> ( M decompPMat K ) = ( i e. N , j e. N |-> ( ( coe1 ` ( i M j ) ) ` K ) ) )

Proof

Step Hyp Ref Expression
1 decpmatval.a
 |-  A = ( N Mat R )
2 decpmatval.b
 |-  B = ( Base ` A )
3 decpmatval0
 |-  ( ( M e. B /\ K e. NN0 ) -> ( M decompPMat K ) = ( i e. dom dom M , j e. dom dom M |-> ( ( coe1 ` ( i M j ) ) ` K ) ) )
4 eqid
 |-  ( Base ` R ) = ( Base ` R )
5 1 4 2 matbas2i
 |-  ( M e. B -> M e. ( ( Base ` R ) ^m ( N X. N ) ) )
6 elmapi
 |-  ( M e. ( ( Base ` R ) ^m ( N X. N ) ) -> M : ( N X. N ) --> ( Base ` R ) )
7 fdm
 |-  ( M : ( N X. N ) --> ( Base ` R ) -> dom M = ( N X. N ) )
8 7 dmeqd
 |-  ( M : ( N X. N ) --> ( Base ` R ) -> dom dom M = dom ( N X. N ) )
9 dmxpid
 |-  dom ( N X. N ) = N
10 8 9 eqtrdi
 |-  ( M : ( N X. N ) --> ( Base ` R ) -> dom dom M = N )
11 5 6 10 3syl
 |-  ( M e. B -> dom dom M = N )
12 11 adantr
 |-  ( ( M e. B /\ K e. NN0 ) -> dom dom M = N )
13 eqidd
 |-  ( ( M e. B /\ K e. NN0 ) -> ( ( coe1 ` ( i M j ) ) ` K ) = ( ( coe1 ` ( i M j ) ) ` K ) )
14 12 12 13 mpoeq123dv
 |-  ( ( M e. B /\ K e. NN0 ) -> ( i e. dom dom M , j e. dom dom M |-> ( ( coe1 ` ( i M j ) ) ` K ) ) = ( i e. N , j e. N |-> ( ( coe1 ` ( i M j ) ) ` K ) ) )
15 3 14 eqtrd
 |-  ( ( M e. B /\ K e. NN0 ) -> ( M decompPMat K ) = ( i e. N , j e. N |-> ( ( coe1 ` ( i M j ) ) ` K ) ) )