Step |
Hyp |
Ref |
Expression |
1 |
|
decpmatval.a |
|- A = ( N Mat R ) |
2 |
|
decpmatval.b |
|- B = ( Base ` A ) |
3 |
|
decpmatval0 |
|- ( ( M e. B /\ K e. NN0 ) -> ( M decompPMat K ) = ( i e. dom dom M , j e. dom dom M |-> ( ( coe1 ` ( i M j ) ) ` K ) ) ) |
4 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
5 |
1 4 2
|
matbas2i |
|- ( M e. B -> M e. ( ( Base ` R ) ^m ( N X. N ) ) ) |
6 |
|
elmapi |
|- ( M e. ( ( Base ` R ) ^m ( N X. N ) ) -> M : ( N X. N ) --> ( Base ` R ) ) |
7 |
|
fdm |
|- ( M : ( N X. N ) --> ( Base ` R ) -> dom M = ( N X. N ) ) |
8 |
7
|
dmeqd |
|- ( M : ( N X. N ) --> ( Base ` R ) -> dom dom M = dom ( N X. N ) ) |
9 |
|
dmxpid |
|- dom ( N X. N ) = N |
10 |
8 9
|
eqtrdi |
|- ( M : ( N X. N ) --> ( Base ` R ) -> dom dom M = N ) |
11 |
5 6 10
|
3syl |
|- ( M e. B -> dom dom M = N ) |
12 |
11
|
adantr |
|- ( ( M e. B /\ K e. NN0 ) -> dom dom M = N ) |
13 |
|
eqidd |
|- ( ( M e. B /\ K e. NN0 ) -> ( ( coe1 ` ( i M j ) ) ` K ) = ( ( coe1 ` ( i M j ) ) ` K ) ) |
14 |
12 12 13
|
mpoeq123dv |
|- ( ( M e. B /\ K e. NN0 ) -> ( i e. dom dom M , j e. dom dom M |-> ( ( coe1 ` ( i M j ) ) ` K ) ) = ( i e. N , j e. N |-> ( ( coe1 ` ( i M j ) ) ` K ) ) ) |
15 |
3 14
|
eqtrd |
|- ( ( M e. B /\ K e. NN0 ) -> ( M decompPMat K ) = ( i e. N , j e. N |-> ( ( coe1 ` ( i M j ) ) ` K ) ) ) |