Step |
Hyp |
Ref |
Expression |
1 |
|
df-decpmat |
|- decompPMat = ( m e. _V , k e. NN0 |-> ( i e. dom dom m , j e. dom dom m |-> ( ( coe1 ` ( i m j ) ) ` k ) ) ) |
2 |
1
|
a1i |
|- ( ( M e. V /\ K e. NN0 ) -> decompPMat = ( m e. _V , k e. NN0 |-> ( i e. dom dom m , j e. dom dom m |-> ( ( coe1 ` ( i m j ) ) ` k ) ) ) ) |
3 |
|
dmeq |
|- ( m = M -> dom m = dom M ) |
4 |
3
|
adantr |
|- ( ( m = M /\ k = K ) -> dom m = dom M ) |
5 |
4
|
dmeqd |
|- ( ( m = M /\ k = K ) -> dom dom m = dom dom M ) |
6 |
|
oveq |
|- ( m = M -> ( i m j ) = ( i M j ) ) |
7 |
6
|
fveq2d |
|- ( m = M -> ( coe1 ` ( i m j ) ) = ( coe1 ` ( i M j ) ) ) |
8 |
7
|
adantr |
|- ( ( m = M /\ k = K ) -> ( coe1 ` ( i m j ) ) = ( coe1 ` ( i M j ) ) ) |
9 |
|
simpr |
|- ( ( m = M /\ k = K ) -> k = K ) |
10 |
8 9
|
fveq12d |
|- ( ( m = M /\ k = K ) -> ( ( coe1 ` ( i m j ) ) ` k ) = ( ( coe1 ` ( i M j ) ) ` K ) ) |
11 |
5 5 10
|
mpoeq123dv |
|- ( ( m = M /\ k = K ) -> ( i e. dom dom m , j e. dom dom m |-> ( ( coe1 ` ( i m j ) ) ` k ) ) = ( i e. dom dom M , j e. dom dom M |-> ( ( coe1 ` ( i M j ) ) ` K ) ) ) |
12 |
11
|
adantl |
|- ( ( ( M e. V /\ K e. NN0 ) /\ ( m = M /\ k = K ) ) -> ( i e. dom dom m , j e. dom dom m |-> ( ( coe1 ` ( i m j ) ) ` k ) ) = ( i e. dom dom M , j e. dom dom M |-> ( ( coe1 ` ( i M j ) ) ` K ) ) ) |
13 |
|
elex |
|- ( M e. V -> M e. _V ) |
14 |
13
|
adantr |
|- ( ( M e. V /\ K e. NN0 ) -> M e. _V ) |
15 |
|
simpr |
|- ( ( M e. V /\ K e. NN0 ) -> K e. NN0 ) |
16 |
|
dmexg |
|- ( M e. V -> dom M e. _V ) |
17 |
16
|
dmexd |
|- ( M e. V -> dom dom M e. _V ) |
18 |
17 17
|
jca |
|- ( M e. V -> ( dom dom M e. _V /\ dom dom M e. _V ) ) |
19 |
18
|
adantr |
|- ( ( M e. V /\ K e. NN0 ) -> ( dom dom M e. _V /\ dom dom M e. _V ) ) |
20 |
|
mpoexga |
|- ( ( dom dom M e. _V /\ dom dom M e. _V ) -> ( i e. dom dom M , j e. dom dom M |-> ( ( coe1 ` ( i M j ) ) ` K ) ) e. _V ) |
21 |
19 20
|
syl |
|- ( ( M e. V /\ K e. NN0 ) -> ( i e. dom dom M , j e. dom dom M |-> ( ( coe1 ` ( i M j ) ) ` K ) ) e. _V ) |
22 |
2 12 14 15 21
|
ovmpod |
|- ( ( M e. V /\ K e. NN0 ) -> ( M decompPMat K ) = ( i e. dom dom M , j e. dom dom M |-> ( ( coe1 ` ( i M j ) ) ` K ) ) ) |