Description: Perform a multiply-add of two numerals M and N against a fixed multiplicand P (with carry). (Contributed by AV, 16-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | decrmanc.a | |- A e. NN0 |
|
decrmanc.b | |- B e. NN0 |
||
decrmanc.n | |- N e. NN0 |
||
decrmanc.m | |- M = ; A B |
||
decrmanc.p | |- P e. NN0 |
||
decrmac.f | |- F e. NN0 |
||
decrmac.g | |- G e. NN0 |
||
decrmac.e | |- ( ( A x. P ) + G ) = E |
||
decrmac.2 | |- ( ( B x. P ) + N ) = ; G F |
||
Assertion | decrmac | |- ( ( M x. P ) + N ) = ; E F |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | decrmanc.a | |- A e. NN0 |
|
2 | decrmanc.b | |- B e. NN0 |
|
3 | decrmanc.n | |- N e. NN0 |
|
4 | decrmanc.m | |- M = ; A B |
|
5 | decrmanc.p | |- P e. NN0 |
|
6 | decrmac.f | |- F e. NN0 |
|
7 | decrmac.g | |- G e. NN0 |
|
8 | decrmac.e | |- ( ( A x. P ) + G ) = E |
|
9 | decrmac.2 | |- ( ( B x. P ) + N ) = ; G F |
|
10 | 0nn0 | |- 0 e. NN0 |
|
11 | 3 | dec0h | |- N = ; 0 N |
12 | 7 | nn0cni | |- G e. CC |
13 | 12 | addid2i | |- ( 0 + G ) = G |
14 | 13 | oveq2i | |- ( ( A x. P ) + ( 0 + G ) ) = ( ( A x. P ) + G ) |
15 | 14 8 | eqtri | |- ( ( A x. P ) + ( 0 + G ) ) = E |
16 | 1 2 10 3 4 11 5 6 7 15 9 | decmac | |- ( ( M x. P ) + N ) = ; E F |