Description: Perform a multiply-add of two numerals M and N against a fixed multiplicand P (with carry). (Contributed by AV, 16-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | decrmanc.a | |- A e. NN0 | |
| decrmanc.b | |- B e. NN0 | ||
| decrmanc.n | |- N e. NN0 | ||
| decrmanc.m | |- M = ; A B | ||
| decrmanc.p | |- P e. NN0 | ||
| decrmac.f | |- F e. NN0 | ||
| decrmac.g | |- G e. NN0 | ||
| decrmac.e | |- ( ( A x. P ) + G ) = E | ||
| decrmac.2 | |- ( ( B x. P ) + N ) = ; G F | ||
| Assertion | decrmac | |- ( ( M x. P ) + N ) = ; E F | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | decrmanc.a | |- A e. NN0 | |
| 2 | decrmanc.b | |- B e. NN0 | |
| 3 | decrmanc.n | |- N e. NN0 | |
| 4 | decrmanc.m | |- M = ; A B | |
| 5 | decrmanc.p | |- P e. NN0 | |
| 6 | decrmac.f | |- F e. NN0 | |
| 7 | decrmac.g | |- G e. NN0 | |
| 8 | decrmac.e | |- ( ( A x. P ) + G ) = E | |
| 9 | decrmac.2 | |- ( ( B x. P ) + N ) = ; G F | |
| 10 | 0nn0 | |- 0 e. NN0 | |
| 11 | 3 | dec0h | |- N = ; 0 N | 
| 12 | 7 | nn0cni | |- G e. CC | 
| 13 | 12 | addlidi | |- ( 0 + G ) = G | 
| 14 | 13 | oveq2i | |- ( ( A x. P ) + ( 0 + G ) ) = ( ( A x. P ) + G ) | 
| 15 | 14 8 | eqtri | |- ( ( A x. P ) + ( 0 + G ) ) = E | 
| 16 | 1 2 10 3 4 11 5 6 7 15 9 | decmac | |- ( ( M x. P ) + N ) = ; E F |