Metamath Proof Explorer


Theorem decrmanc

Description: Perform a multiply-add of two numerals M and N against a fixed multiplicand P (no carry). (Contributed by AV, 16-Sep-2021)

Ref Expression
Hypotheses decrmanc.a
|- A e. NN0
decrmanc.b
|- B e. NN0
decrmanc.n
|- N e. NN0
decrmanc.m
|- M = ; A B
decrmanc.p
|- P e. NN0
decrmanc.e
|- ( A x. P ) = E
decrmanc.f
|- ( ( B x. P ) + N ) = F
Assertion decrmanc
|- ( ( M x. P ) + N ) = ; E F

Proof

Step Hyp Ref Expression
1 decrmanc.a
 |-  A e. NN0
2 decrmanc.b
 |-  B e. NN0
3 decrmanc.n
 |-  N e. NN0
4 decrmanc.m
 |-  M = ; A B
5 decrmanc.p
 |-  P e. NN0
6 decrmanc.e
 |-  ( A x. P ) = E
7 decrmanc.f
 |-  ( ( B x. P ) + N ) = F
8 0nn0
 |-  0 e. NN0
9 3 dec0h
 |-  N = ; 0 N
10 1 5 nn0mulcli
 |-  ( A x. P ) e. NN0
11 10 nn0cni
 |-  ( A x. P ) e. CC
12 11 addid1i
 |-  ( ( A x. P ) + 0 ) = ( A x. P )
13 12 6 eqtri
 |-  ( ( A x. P ) + 0 ) = E
14 1 2 8 3 4 9 5 13 7 decma
 |-  ( ( M x. P ) + N ) = ; E F