Description: Perform a multiply-add of two numerals M and N against a fixed multiplicand P (no carry). (Contributed by AV, 16-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | decrmanc.a | |- A e. NN0 |
|
decrmanc.b | |- B e. NN0 |
||
decrmanc.n | |- N e. NN0 |
||
decrmanc.m | |- M = ; A B |
||
decrmanc.p | |- P e. NN0 |
||
decrmanc.e | |- ( A x. P ) = E |
||
decrmanc.f | |- ( ( B x. P ) + N ) = F |
||
Assertion | decrmanc | |- ( ( M x. P ) + N ) = ; E F |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | decrmanc.a | |- A e. NN0 |
|
2 | decrmanc.b | |- B e. NN0 |
|
3 | decrmanc.n | |- N e. NN0 |
|
4 | decrmanc.m | |- M = ; A B |
|
5 | decrmanc.p | |- P e. NN0 |
|
6 | decrmanc.e | |- ( A x. P ) = E |
|
7 | decrmanc.f | |- ( ( B x. P ) + N ) = F |
|
8 | 0nn0 | |- 0 e. NN0 |
|
9 | 3 | dec0h | |- N = ; 0 N |
10 | 1 5 | nn0mulcli | |- ( A x. P ) e. NN0 |
11 | 10 | nn0cni | |- ( A x. P ) e. CC |
12 | 11 | addid1i | |- ( ( A x. P ) + 0 ) = ( A x. P ) |
13 | 12 6 | eqtri | |- ( ( A x. P ) + 0 ) = E |
14 | 1 2 8 3 4 9 5 13 7 | decma | |- ( ( M x. P ) + N ) = ; E F |