Metamath Proof Explorer


Theorem decsplit0

Description: Split a decimal number into two parts. Base case: N = 0 . (Contributed by Mario Carneiro, 16-Jul-2015) (Revised by AV, 8-Sep-2021)

Ref Expression
Hypothesis decsplit0.1
|- A e. NN0
Assertion decsplit0
|- ( ( A x. ( ; 1 0 ^ 0 ) ) + 0 ) = A

Proof

Step Hyp Ref Expression
1 decsplit0.1
 |-  A e. NN0
2 1 decsplit0b
 |-  ( ( A x. ( ; 1 0 ^ 0 ) ) + 0 ) = ( A + 0 )
3 1 nn0cni
 |-  A e. CC
4 3 addid1i
 |-  ( A + 0 ) = A
5 2 4 eqtri
 |-  ( ( A x. ( ; 1 0 ^ 0 ) ) + 0 ) = A