Metamath Proof Explorer


Theorem decsplit0b

Description: Split a decimal number into two parts. Base case: N = 0 . (Contributed by Mario Carneiro, 16-Jul-2015) (Revised by AV, 8-Sep-2021)

Ref Expression
Hypothesis decsplit0.1
|- A e. NN0
Assertion decsplit0b
|- ( ( A x. ( ; 1 0 ^ 0 ) ) + B ) = ( A + B )

Proof

Step Hyp Ref Expression
1 decsplit0.1
 |-  A e. NN0
2 10nn0
 |-  ; 1 0 e. NN0
3 2 numexp0
 |-  ( ; 1 0 ^ 0 ) = 1
4 3 oveq2i
 |-  ( A x. ( ; 1 0 ^ 0 ) ) = ( A x. 1 )
5 1 nn0cni
 |-  A e. CC
6 5 mulid1i
 |-  ( A x. 1 ) = A
7 4 6 eqtri
 |-  ( A x. ( ; 1 0 ^ 0 ) ) = A
8 7 oveq1i
 |-  ( ( A x. ( ; 1 0 ^ 0 ) ) + B ) = ( A + B )