Metamath Proof Explorer


Theorem decsplit1

Description: Split a decimal number into two parts. Base case: N = 1 . (Contributed by Mario Carneiro, 16-Jul-2015) (Revised by AV, 8-Sep-2021)

Ref Expression
Hypothesis decsplit0.1
|- A e. NN0
Assertion decsplit1
|- ( ( A x. ( ; 1 0 ^ 1 ) ) + B ) = ; A B

Proof

Step Hyp Ref Expression
1 decsplit0.1
 |-  A e. NN0
2 10nn0
 |-  ; 1 0 e. NN0
3 2 numexp1
 |-  ( ; 1 0 ^ 1 ) = ; 1 0
4 3 oveq2i
 |-  ( A x. ( ; 1 0 ^ 1 ) ) = ( A x. ; 1 0 )
5 2 nn0cni
 |-  ; 1 0 e. CC
6 1 nn0cni
 |-  A e. CC
7 5 6 mulcomi
 |-  ( ; 1 0 x. A ) = ( A x. ; 1 0 )
8 4 7 eqtr4i
 |-  ( A x. ( ; 1 0 ^ 1 ) ) = ( ; 1 0 x. A )
9 8 oveq1i
 |-  ( ( A x. ( ; 1 0 ^ 1 ) ) + B ) = ( ( ; 1 0 x. A ) + B )
10 dfdec10
 |-  ; A B = ( ( ; 1 0 x. A ) + B )
11 9 10 eqtr4i
 |-  ( ( A x. ( ; 1 0 ^ 1 ) ) + B ) = ; A B