| Step | Hyp | Ref | Expression | 
						
							| 1 |  | decaddi.1 |  |-  A e. NN0 | 
						
							| 2 |  | decaddi.2 |  |-  B e. NN0 | 
						
							| 3 |  | decaddi.3 |  |-  N e. NN0 | 
						
							| 4 |  | decaddi.4 |  |-  M = ; A B | 
						
							| 5 |  | decaddci.5 |  |-  ( A + 1 ) = D | 
						
							| 6 |  | decsubi.5 |  |-  ( B - N ) = C | 
						
							| 7 |  | 10nn0 |  |-  ; 1 0 e. NN0 | 
						
							| 8 | 7 1 | nn0mulcli |  |-  ( ; 1 0 x. A ) e. NN0 | 
						
							| 9 | 8 | nn0cni |  |-  ( ; 1 0 x. A ) e. CC | 
						
							| 10 | 2 | nn0cni |  |-  B e. CC | 
						
							| 11 | 3 | nn0cni |  |-  N e. CC | 
						
							| 12 | 9 10 11 | addsubassi |  |-  ( ( ( ; 1 0 x. A ) + B ) - N ) = ( ( ; 1 0 x. A ) + ( B - N ) ) | 
						
							| 13 |  | dfdec10 |  |-  ; A B = ( ( ; 1 0 x. A ) + B ) | 
						
							| 14 | 4 13 | eqtri |  |-  M = ( ( ; 1 0 x. A ) + B ) | 
						
							| 15 | 14 | oveq1i |  |-  ( M - N ) = ( ( ( ; 1 0 x. A ) + B ) - N ) | 
						
							| 16 |  | dfdec10 |  |-  ; A C = ( ( ; 1 0 x. A ) + C ) | 
						
							| 17 | 6 | eqcomi |  |-  C = ( B - N ) | 
						
							| 18 | 17 | oveq2i |  |-  ( ( ; 1 0 x. A ) + C ) = ( ( ; 1 0 x. A ) + ( B - N ) ) | 
						
							| 19 | 16 18 | eqtri |  |-  ; A C = ( ( ; 1 0 x. A ) + ( B - N ) ) | 
						
							| 20 | 12 15 19 | 3eqtr4i |  |-  ( M - N ) = ; A C |