Metamath Proof Explorer


Theorem dedlem0a

Description: Lemma for an alternate version of weak deduction theorem. (Contributed by NM, 2-Apr-1994) (Proof shortened by Andrew Salmon, 7-May-2011) (Proof shortened by Wolf Lammen, 4-Dec-2012)

Ref Expression
Assertion dedlem0a
|- ( ph -> ( ps <-> ( ( ch -> ph ) -> ( ps /\ ph ) ) ) )

Proof

Step Hyp Ref Expression
1 iba
 |-  ( ph -> ( ps <-> ( ps /\ ph ) ) )
2 biimt
 |-  ( ( ch -> ph ) -> ( ( ps /\ ph ) <-> ( ( ch -> ph ) -> ( ps /\ ph ) ) ) )
3 2 jarri
 |-  ( ph -> ( ( ps /\ ph ) <-> ( ( ch -> ph ) -> ( ps /\ ph ) ) ) )
4 1 3 bitrd
 |-  ( ph -> ( ps <-> ( ( ch -> ph ) -> ( ps /\ ph ) ) ) )