Description: Lemma for an alternate version of weak deduction theorem. (Contributed by NM, 2-Apr-1994) (Proof shortened by Andrew Salmon, 7-May-2011) (Proof shortened by Wolf Lammen, 4-Dec-2012)
Ref | Expression | ||
---|---|---|---|
Assertion | dedlem0a | |- ( ph -> ( ps <-> ( ( ch -> ph ) -> ( ps /\ ph ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iba | |- ( ph -> ( ps <-> ( ps /\ ph ) ) ) |
|
2 | biimt | |- ( ( ch -> ph ) -> ( ( ps /\ ph ) <-> ( ( ch -> ph ) -> ( ps /\ ph ) ) ) ) |
|
3 | 2 | jarri | |- ( ph -> ( ( ps /\ ph ) <-> ( ( ch -> ph ) -> ( ps /\ ph ) ) ) ) |
4 | 1 3 | bitrd | |- ( ph -> ( ps <-> ( ( ch -> ph ) -> ( ps /\ ph ) ) ) ) |