Step |
Hyp |
Ref |
Expression |
1 |
|
pm2.21 |
|- ( -. ph -> ( ph -> ( ch /\ ph ) ) ) |
2 |
1
|
imim2d |
|- ( -. ph -> ( ( ps -> ph ) -> ( ps -> ( ch /\ ph ) ) ) ) |
3 |
2
|
com23 |
|- ( -. ph -> ( ps -> ( ( ps -> ph ) -> ( ch /\ ph ) ) ) ) |
4 |
|
pm2.21 |
|- ( -. ps -> ( ps -> ph ) ) |
5 |
|
simpr |
|- ( ( ch /\ ph ) -> ph ) |
6 |
4 5
|
imim12i |
|- ( ( ( ps -> ph ) -> ( ch /\ ph ) ) -> ( -. ps -> ph ) ) |
7 |
6
|
con1d |
|- ( ( ( ps -> ph ) -> ( ch /\ ph ) ) -> ( -. ph -> ps ) ) |
8 |
7
|
com12 |
|- ( -. ph -> ( ( ( ps -> ph ) -> ( ch /\ ph ) ) -> ps ) ) |
9 |
3 8
|
impbid |
|- ( -. ph -> ( ps <-> ( ( ps -> ph ) -> ( ch /\ ph ) ) ) ) |