Description: Lemma for weak deduction theorem. See also ifpfal . (Contributed by NM, 15-May-1999) (Proof shortened by Andrew Salmon, 7-May-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | dedlemb | |- ( -. ph -> ( ch <-> ( ( ps /\ ph ) \/ ( ch /\ -. ph ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | olc | |- ( ( ch /\ -. ph ) -> ( ( ps /\ ph ) \/ ( ch /\ -. ph ) ) ) |
|
2 | 1 | expcom | |- ( -. ph -> ( ch -> ( ( ps /\ ph ) \/ ( ch /\ -. ph ) ) ) ) |
3 | pm2.21 | |- ( -. ph -> ( ph -> ch ) ) |
|
4 | 3 | adantld | |- ( -. ph -> ( ( ps /\ ph ) -> ch ) ) |
5 | simpl | |- ( ( ch /\ -. ph ) -> ch ) |
|
6 | 5 | a1i | |- ( -. ph -> ( ( ch /\ -. ph ) -> ch ) ) |
7 | 4 6 | jaod | |- ( -. ph -> ( ( ( ps /\ ph ) \/ ( ch /\ -. ph ) ) -> ch ) ) |
8 | 2 7 | impbid | |- ( -. ph -> ( ch <-> ( ( ps /\ ph ) \/ ( ch /\ -. ph ) ) ) ) |