Description: Lemma for weak deduction theorem. See also ifpfal . (Contributed by NM, 15-May-1999) (Proof shortened by Andrew Salmon, 7-May-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dedlemb | |- ( -. ph -> ( ch <-> ( ( ps /\ ph ) \/ ( ch /\ -. ph ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olc | |- ( ( ch /\ -. ph ) -> ( ( ps /\ ph ) \/ ( ch /\ -. ph ) ) ) |
|
| 2 | 1 | expcom | |- ( -. ph -> ( ch -> ( ( ps /\ ph ) \/ ( ch /\ -. ph ) ) ) ) |
| 3 | pm2.21 | |- ( -. ph -> ( ph -> ch ) ) |
|
| 4 | 3 | adantld | |- ( -. ph -> ( ( ps /\ ph ) -> ch ) ) |
| 5 | simpl | |- ( ( ch /\ -. ph ) -> ch ) |
|
| 6 | 5 | a1i | |- ( -. ph -> ( ( ch /\ -. ph ) -> ch ) ) |
| 7 | 4 6 | jaod | |- ( -. ph -> ( ( ( ps /\ ph ) \/ ( ch /\ -. ph ) ) -> ch ) ) |
| 8 | 2 7 | impbid | |- ( -. ph -> ( ch <-> ( ( ps /\ ph ) \/ ( ch /\ -. ph ) ) ) ) |