Metamath Proof Explorer


Theorem dedth3h

Description: Weak deduction theorem eliminating three hypotheses. See comments in dedth2h . (Contributed by NM, 15-May-1999)

Ref Expression
Hypotheses dedth3h.1
|- ( A = if ( ph , A , D ) -> ( th <-> ta ) )
dedth3h.2
|- ( B = if ( ps , B , R ) -> ( ta <-> et ) )
dedth3h.3
|- ( C = if ( ch , C , S ) -> ( et <-> ze ) )
dedth3h.4
|- ze
Assertion dedth3h
|- ( ( ph /\ ps /\ ch ) -> th )

Proof

Step Hyp Ref Expression
1 dedth3h.1
 |-  ( A = if ( ph , A , D ) -> ( th <-> ta ) )
2 dedth3h.2
 |-  ( B = if ( ps , B , R ) -> ( ta <-> et ) )
3 dedth3h.3
 |-  ( C = if ( ch , C , S ) -> ( et <-> ze ) )
4 dedth3h.4
 |-  ze
5 1 imbi2d
 |-  ( A = if ( ph , A , D ) -> ( ( ( ps /\ ch ) -> th ) <-> ( ( ps /\ ch ) -> ta ) ) )
6 2 3 4 dedth2h
 |-  ( ( ps /\ ch ) -> ta )
7 5 6 dedth
 |-  ( ph -> ( ( ps /\ ch ) -> th ) )
8 7 3impib
 |-  ( ( ph /\ ps /\ ch ) -> th )