Description: Weak deduction theorem eliminating three hypotheses. See comments in dedth2h . (Contributed by NM, 15-May-1999)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dedth3h.1 | |- ( A = if ( ph , A , D ) -> ( th <-> ta ) ) |
|
dedth3h.2 | |- ( B = if ( ps , B , R ) -> ( ta <-> et ) ) |
||
dedth3h.3 | |- ( C = if ( ch , C , S ) -> ( et <-> ze ) ) |
||
dedth3h.4 | |- ze |
||
Assertion | dedth3h | |- ( ( ph /\ ps /\ ch ) -> th ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dedth3h.1 | |- ( A = if ( ph , A , D ) -> ( th <-> ta ) ) |
|
2 | dedth3h.2 | |- ( B = if ( ps , B , R ) -> ( ta <-> et ) ) |
|
3 | dedth3h.3 | |- ( C = if ( ch , C , S ) -> ( et <-> ze ) ) |
|
4 | dedth3h.4 | |- ze |
|
5 | 1 | imbi2d | |- ( A = if ( ph , A , D ) -> ( ( ( ps /\ ch ) -> th ) <-> ( ( ps /\ ch ) -> ta ) ) ) |
6 | 2 3 4 | dedth2h | |- ( ( ps /\ ch ) -> ta ) |
7 | 5 6 | dedth | |- ( ph -> ( ( ps /\ ch ) -> th ) ) |
8 | 7 | 3impib | |- ( ( ph /\ ps /\ ch ) -> th ) |