Step |
Hyp |
Ref |
Expression |
1 |
|
dedth4h.1 |
|- ( A = if ( ph , A , R ) -> ( ta <-> et ) ) |
2 |
|
dedth4h.2 |
|- ( B = if ( ps , B , S ) -> ( et <-> ze ) ) |
3 |
|
dedth4h.3 |
|- ( C = if ( ch , C , F ) -> ( ze <-> si ) ) |
4 |
|
dedth4h.4 |
|- ( D = if ( th , D , G ) -> ( si <-> rh ) ) |
5 |
|
dedth4h.5 |
|- rh |
6 |
1
|
imbi2d |
|- ( A = if ( ph , A , R ) -> ( ( ( ch /\ th ) -> ta ) <-> ( ( ch /\ th ) -> et ) ) ) |
7 |
2
|
imbi2d |
|- ( B = if ( ps , B , S ) -> ( ( ( ch /\ th ) -> et ) <-> ( ( ch /\ th ) -> ze ) ) ) |
8 |
3 4 5
|
dedth2h |
|- ( ( ch /\ th ) -> ze ) |
9 |
6 7 8
|
dedth2h |
|- ( ( ph /\ ps ) -> ( ( ch /\ th ) -> ta ) ) |
10 |
9
|
imp |
|- ( ( ( ph /\ ps ) /\ ( ch /\ th ) ) -> ta ) |