| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dedth4h.1 |
|- ( A = if ( ph , A , R ) -> ( ta <-> et ) ) |
| 2 |
|
dedth4h.2 |
|- ( B = if ( ps , B , S ) -> ( et <-> ze ) ) |
| 3 |
|
dedth4h.3 |
|- ( C = if ( ch , C , F ) -> ( ze <-> si ) ) |
| 4 |
|
dedth4h.4 |
|- ( D = if ( th , D , G ) -> ( si <-> rh ) ) |
| 5 |
|
dedth4h.5 |
|- rh |
| 6 |
1
|
imbi2d |
|- ( A = if ( ph , A , R ) -> ( ( ( ch /\ th ) -> ta ) <-> ( ( ch /\ th ) -> et ) ) ) |
| 7 |
2
|
imbi2d |
|- ( B = if ( ps , B , S ) -> ( ( ( ch /\ th ) -> et ) <-> ( ( ch /\ th ) -> ze ) ) ) |
| 8 |
3 4 5
|
dedth2h |
|- ( ( ch /\ th ) -> ze ) |
| 9 |
6 7 8
|
dedth2h |
|- ( ( ph /\ ps ) -> ( ( ch /\ th ) -> ta ) ) |
| 10 |
9
|
imp |
|- ( ( ( ph /\ ps ) /\ ( ch /\ th ) ) -> ta ) |