Metamath Proof Explorer


Theorem dedth4v

Description: Weak deduction theorem for eliminating a hypothesis with 4 class variables. See comments in dedth2v . (Contributed by NM, 21-Apr-2007) (Proof shortened by Eric Schmidt, 28-Jul-2009)

Ref Expression
Hypotheses dedth4v.1
|- ( A = if ( ph , A , R ) -> ( ps <-> ch ) )
dedth4v.2
|- ( B = if ( ph , B , S ) -> ( ch <-> th ) )
dedth4v.3
|- ( C = if ( ph , C , T ) -> ( th <-> ta ) )
dedth4v.4
|- ( D = if ( ph , D , U ) -> ( ta <-> et ) )
dedth4v.5
|- et
Assertion dedth4v
|- ( ph -> ps )

Proof

Step Hyp Ref Expression
1 dedth4v.1
 |-  ( A = if ( ph , A , R ) -> ( ps <-> ch ) )
2 dedth4v.2
 |-  ( B = if ( ph , B , S ) -> ( ch <-> th ) )
3 dedth4v.3
 |-  ( C = if ( ph , C , T ) -> ( th <-> ta ) )
4 dedth4v.4
 |-  ( D = if ( ph , D , U ) -> ( ta <-> et ) )
5 dedth4v.5
 |-  et
6 1 2 3 4 5 dedth4h
 |-  ( ( ( ph /\ ph ) /\ ( ph /\ ph ) ) -> ps )
7 6 anidms
 |-  ( ( ph /\ ph ) -> ps )
8 7 anidms
 |-  ( ph -> ps )