Description: Weak deduction theorem for eliminating a hypothesis with 4 class variables. See comments in dedth2v . (Contributed by NM, 21-Apr-2007) (Proof shortened by Eric Schmidt, 28-Jul-2009)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dedth4v.1 | |- ( A = if ( ph , A , R ) -> ( ps <-> ch ) ) |
|
dedth4v.2 | |- ( B = if ( ph , B , S ) -> ( ch <-> th ) ) |
||
dedth4v.3 | |- ( C = if ( ph , C , T ) -> ( th <-> ta ) ) |
||
dedth4v.4 | |- ( D = if ( ph , D , U ) -> ( ta <-> et ) ) |
||
dedth4v.5 | |- et |
||
Assertion | dedth4v | |- ( ph -> ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dedth4v.1 | |- ( A = if ( ph , A , R ) -> ( ps <-> ch ) ) |
|
2 | dedth4v.2 | |- ( B = if ( ph , B , S ) -> ( ch <-> th ) ) |
|
3 | dedth4v.3 | |- ( C = if ( ph , C , T ) -> ( th <-> ta ) ) |
|
4 | dedth4v.4 | |- ( D = if ( ph , D , U ) -> ( ta <-> et ) ) |
|
5 | dedth4v.5 | |- et |
|
6 | 1 2 3 4 5 | dedth4h | |- ( ( ( ph /\ ph ) /\ ( ph /\ ph ) ) -> ps ) |
7 | 6 | anidms | |- ( ( ph /\ ph ) -> ps ) |
8 | 7 | anidms | |- ( ph -> ps ) |