| Step | Hyp | Ref | Expression | 
						
							| 1 |  | deg1addle.y |  |-  Y = ( Poly1 ` R ) | 
						
							| 2 |  | deg1addle.d |  |-  D = ( deg1 ` R ) | 
						
							| 3 |  | deg1addle.r |  |-  ( ph -> R e. Ring ) | 
						
							| 4 |  | deg1addle.b |  |-  B = ( Base ` Y ) | 
						
							| 5 |  | deg1addle.p |  |-  .+ = ( +g ` Y ) | 
						
							| 6 |  | deg1addle.f |  |-  ( ph -> F e. B ) | 
						
							| 7 |  | deg1addle.g |  |-  ( ph -> G e. B ) | 
						
							| 8 |  | deg1add.l |  |-  ( ph -> ( D ` G ) < ( D ` F ) ) | 
						
							| 9 | 1 | ply1ring |  |-  ( R e. Ring -> Y e. Ring ) | 
						
							| 10 | 3 9 | syl |  |-  ( ph -> Y e. Ring ) | 
						
							| 11 | 4 5 | ringacl |  |-  ( ( Y e. Ring /\ F e. B /\ G e. B ) -> ( F .+ G ) e. B ) | 
						
							| 12 | 10 6 7 11 | syl3anc |  |-  ( ph -> ( F .+ G ) e. B ) | 
						
							| 13 | 2 1 4 | deg1xrcl |  |-  ( ( F .+ G ) e. B -> ( D ` ( F .+ G ) ) e. RR* ) | 
						
							| 14 | 12 13 | syl |  |-  ( ph -> ( D ` ( F .+ G ) ) e. RR* ) | 
						
							| 15 | 2 1 4 | deg1xrcl |  |-  ( F e. B -> ( D ` F ) e. RR* ) | 
						
							| 16 | 6 15 | syl |  |-  ( ph -> ( D ` F ) e. RR* ) | 
						
							| 17 | 1 2 3 4 5 6 7 | deg1addle |  |-  ( ph -> ( D ` ( F .+ G ) ) <_ if ( ( D ` F ) <_ ( D ` G ) , ( D ` G ) , ( D ` F ) ) ) | 
						
							| 18 | 2 1 4 | deg1xrcl |  |-  ( G e. B -> ( D ` G ) e. RR* ) | 
						
							| 19 | 7 18 | syl |  |-  ( ph -> ( D ` G ) e. RR* ) | 
						
							| 20 |  | xrltnle |  |-  ( ( ( D ` G ) e. RR* /\ ( D ` F ) e. RR* ) -> ( ( D ` G ) < ( D ` F ) <-> -. ( D ` F ) <_ ( D ` G ) ) ) | 
						
							| 21 | 19 16 20 | syl2anc |  |-  ( ph -> ( ( D ` G ) < ( D ` F ) <-> -. ( D ` F ) <_ ( D ` G ) ) ) | 
						
							| 22 | 8 21 | mpbid |  |-  ( ph -> -. ( D ` F ) <_ ( D ` G ) ) | 
						
							| 23 | 22 | iffalsed |  |-  ( ph -> if ( ( D ` F ) <_ ( D ` G ) , ( D ` G ) , ( D ` F ) ) = ( D ` F ) ) | 
						
							| 24 | 17 23 | breqtrd |  |-  ( ph -> ( D ` ( F .+ G ) ) <_ ( D ` F ) ) | 
						
							| 25 |  | nltmnf |  |-  ( ( D ` G ) e. RR* -> -. ( D ` G ) < -oo ) | 
						
							| 26 | 19 25 | syl |  |-  ( ph -> -. ( D ` G ) < -oo ) | 
						
							| 27 | 8 | adantr |  |-  ( ( ph /\ F = ( 0g ` Y ) ) -> ( D ` G ) < ( D ` F ) ) | 
						
							| 28 |  | fveq2 |  |-  ( F = ( 0g ` Y ) -> ( D ` F ) = ( D ` ( 0g ` Y ) ) ) | 
						
							| 29 |  | eqid |  |-  ( 0g ` Y ) = ( 0g ` Y ) | 
						
							| 30 | 2 1 29 | deg1z |  |-  ( R e. Ring -> ( D ` ( 0g ` Y ) ) = -oo ) | 
						
							| 31 | 3 30 | syl |  |-  ( ph -> ( D ` ( 0g ` Y ) ) = -oo ) | 
						
							| 32 | 28 31 | sylan9eqr |  |-  ( ( ph /\ F = ( 0g ` Y ) ) -> ( D ` F ) = -oo ) | 
						
							| 33 | 27 32 | breqtrd |  |-  ( ( ph /\ F = ( 0g ` Y ) ) -> ( D ` G ) < -oo ) | 
						
							| 34 | 33 | ex |  |-  ( ph -> ( F = ( 0g ` Y ) -> ( D ` G ) < -oo ) ) | 
						
							| 35 | 34 | necon3bd |  |-  ( ph -> ( -. ( D ` G ) < -oo -> F =/= ( 0g ` Y ) ) ) | 
						
							| 36 | 26 35 | mpd |  |-  ( ph -> F =/= ( 0g ` Y ) ) | 
						
							| 37 | 2 1 29 4 | deg1nn0cl |  |-  ( ( R e. Ring /\ F e. B /\ F =/= ( 0g ` Y ) ) -> ( D ` F ) e. NN0 ) | 
						
							| 38 | 3 6 36 37 | syl3anc |  |-  ( ph -> ( D ` F ) e. NN0 ) | 
						
							| 39 |  | eqid |  |-  ( +g ` R ) = ( +g ` R ) | 
						
							| 40 | 1 4 5 39 | coe1addfv |  |-  ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ ( D ` F ) e. NN0 ) -> ( ( coe1 ` ( F .+ G ) ) ` ( D ` F ) ) = ( ( ( coe1 ` F ) ` ( D ` F ) ) ( +g ` R ) ( ( coe1 ` G ) ` ( D ` F ) ) ) ) | 
						
							| 41 | 3 6 7 38 40 | syl31anc |  |-  ( ph -> ( ( coe1 ` ( F .+ G ) ) ` ( D ` F ) ) = ( ( ( coe1 ` F ) ` ( D ` F ) ) ( +g ` R ) ( ( coe1 ` G ) ` ( D ` F ) ) ) ) | 
						
							| 42 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 43 |  | eqid |  |-  ( coe1 ` G ) = ( coe1 ` G ) | 
						
							| 44 | 2 1 4 42 43 | deg1lt |  |-  ( ( G e. B /\ ( D ` F ) e. NN0 /\ ( D ` G ) < ( D ` F ) ) -> ( ( coe1 ` G ) ` ( D ` F ) ) = ( 0g ` R ) ) | 
						
							| 45 | 7 38 8 44 | syl3anc |  |-  ( ph -> ( ( coe1 ` G ) ` ( D ` F ) ) = ( 0g ` R ) ) | 
						
							| 46 | 45 | oveq2d |  |-  ( ph -> ( ( ( coe1 ` F ) ` ( D ` F ) ) ( +g ` R ) ( ( coe1 ` G ) ` ( D ` F ) ) ) = ( ( ( coe1 ` F ) ` ( D ` F ) ) ( +g ` R ) ( 0g ` R ) ) ) | 
						
							| 47 |  | ringgrp |  |-  ( R e. Ring -> R e. Grp ) | 
						
							| 48 | 3 47 | syl |  |-  ( ph -> R e. Grp ) | 
						
							| 49 |  | eqid |  |-  ( coe1 ` F ) = ( coe1 ` F ) | 
						
							| 50 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 51 | 49 4 1 50 | coe1f |  |-  ( F e. B -> ( coe1 ` F ) : NN0 --> ( Base ` R ) ) | 
						
							| 52 | 6 51 | syl |  |-  ( ph -> ( coe1 ` F ) : NN0 --> ( Base ` R ) ) | 
						
							| 53 | 52 38 | ffvelcdmd |  |-  ( ph -> ( ( coe1 ` F ) ` ( D ` F ) ) e. ( Base ` R ) ) | 
						
							| 54 | 50 39 42 | grprid |  |-  ( ( R e. Grp /\ ( ( coe1 ` F ) ` ( D ` F ) ) e. ( Base ` R ) ) -> ( ( ( coe1 ` F ) ` ( D ` F ) ) ( +g ` R ) ( 0g ` R ) ) = ( ( coe1 ` F ) ` ( D ` F ) ) ) | 
						
							| 55 | 48 53 54 | syl2anc |  |-  ( ph -> ( ( ( coe1 ` F ) ` ( D ` F ) ) ( +g ` R ) ( 0g ` R ) ) = ( ( coe1 ` F ) ` ( D ` F ) ) ) | 
						
							| 56 | 41 46 55 | 3eqtrd |  |-  ( ph -> ( ( coe1 ` ( F .+ G ) ) ` ( D ` F ) ) = ( ( coe1 ` F ) ` ( D ` F ) ) ) | 
						
							| 57 | 2 1 29 4 42 49 | deg1ldg |  |-  ( ( R e. Ring /\ F e. B /\ F =/= ( 0g ` Y ) ) -> ( ( coe1 ` F ) ` ( D ` F ) ) =/= ( 0g ` R ) ) | 
						
							| 58 | 3 6 36 57 | syl3anc |  |-  ( ph -> ( ( coe1 ` F ) ` ( D ` F ) ) =/= ( 0g ` R ) ) | 
						
							| 59 | 56 58 | eqnetrd |  |-  ( ph -> ( ( coe1 ` ( F .+ G ) ) ` ( D ` F ) ) =/= ( 0g ` R ) ) | 
						
							| 60 |  | eqid |  |-  ( coe1 ` ( F .+ G ) ) = ( coe1 ` ( F .+ G ) ) | 
						
							| 61 | 2 1 4 42 60 | deg1ge |  |-  ( ( ( F .+ G ) e. B /\ ( D ` F ) e. NN0 /\ ( ( coe1 ` ( F .+ G ) ) ` ( D ` F ) ) =/= ( 0g ` R ) ) -> ( D ` F ) <_ ( D ` ( F .+ G ) ) ) | 
						
							| 62 | 12 38 59 61 | syl3anc |  |-  ( ph -> ( D ` F ) <_ ( D ` ( F .+ G ) ) ) | 
						
							| 63 | 14 16 24 62 | xrletrid |  |-  ( ph -> ( D ` ( F .+ G ) ) = ( D ` F ) ) |