Step |
Hyp |
Ref |
Expression |
1 |
|
deg1addle.y |
|- Y = ( Poly1 ` R ) |
2 |
|
deg1addle.d |
|- D = ( deg1 ` R ) |
3 |
|
deg1addle.r |
|- ( ph -> R e. Ring ) |
4 |
|
deg1addle.b |
|- B = ( Base ` Y ) |
5 |
|
deg1addle.p |
|- .+ = ( +g ` Y ) |
6 |
|
deg1addle.f |
|- ( ph -> F e. B ) |
7 |
|
deg1addle.g |
|- ( ph -> G e. B ) |
8 |
|
eqid |
|- ( 1o mPoly R ) = ( 1o mPoly R ) |
9 |
2
|
deg1fval |
|- D = ( 1o mDeg R ) |
10 |
|
1on |
|- 1o e. On |
11 |
10
|
a1i |
|- ( ph -> 1o e. On ) |
12 |
|
eqid |
|- ( Base ` ( 1o mPoly R ) ) = ( Base ` ( 1o mPoly R ) ) |
13 |
1 8 5
|
ply1plusg |
|- .+ = ( +g ` ( 1o mPoly R ) ) |
14 |
1 4
|
ply1bascl2 |
|- ( F e. B -> F e. ( Base ` ( 1o mPoly R ) ) ) |
15 |
6 14
|
syl |
|- ( ph -> F e. ( Base ` ( 1o mPoly R ) ) ) |
16 |
1 4
|
ply1bascl2 |
|- ( G e. B -> G e. ( Base ` ( 1o mPoly R ) ) ) |
17 |
7 16
|
syl |
|- ( ph -> G e. ( Base ` ( 1o mPoly R ) ) ) |
18 |
8 9 11 3 12 13 15 17
|
mdegaddle |
|- ( ph -> ( D ` ( F .+ G ) ) <_ if ( ( D ` F ) <_ ( D ` G ) , ( D ` G ) , ( D ` F ) ) ) |