Metamath Proof Explorer


Theorem deg1cl

Description: Sharp closure of univariate polynomial degree. (Contributed by Stefan O'Rear, 23-Mar-2015)

Ref Expression
Hypotheses deg1xrf.d
|- D = ( deg1 ` R )
deg1xrf.p
|- P = ( Poly1 ` R )
deg1xrf.b
|- B = ( Base ` P )
Assertion deg1cl
|- ( F e. B -> ( D ` F ) e. ( NN0 u. { -oo } ) )

Proof

Step Hyp Ref Expression
1 deg1xrf.d
 |-  D = ( deg1 ` R )
2 deg1xrf.p
 |-  P = ( Poly1 ` R )
3 deg1xrf.b
 |-  B = ( Base ` P )
4 1 deg1fval
 |-  D = ( 1o mDeg R )
5 eqid
 |-  ( 1o mPoly R ) = ( 1o mPoly R )
6 eqid
 |-  ( PwSer1 ` R ) = ( PwSer1 ` R )
7 2 6 3 ply1bas
 |-  B = ( Base ` ( 1o mPoly R ) )
8 4 5 7 mdegcl
 |-  ( F e. B -> ( D ` F ) e. ( NN0 u. { -oo } ) )