| Step | Hyp | Ref | Expression | 
						
							| 1 |  | deg1fval.d |  |-  D = ( deg1 ` R ) | 
						
							| 2 |  | oveq2 |  |-  ( r = R -> ( 1o mDeg r ) = ( 1o mDeg R ) ) | 
						
							| 3 |  | df-deg1 |  |-  deg1 = ( r e. _V |-> ( 1o mDeg r ) ) | 
						
							| 4 |  | ovex |  |-  ( 1o mDeg R ) e. _V | 
						
							| 5 | 2 3 4 | fvmpt |  |-  ( R e. _V -> ( deg1 ` R ) = ( 1o mDeg R ) ) | 
						
							| 6 |  | fvprc |  |-  ( -. R e. _V -> ( deg1 ` R ) = (/) ) | 
						
							| 7 |  | reldmmdeg |  |-  Rel dom mDeg | 
						
							| 8 | 7 | ovprc2 |  |-  ( -. R e. _V -> ( 1o mDeg R ) = (/) ) | 
						
							| 9 | 6 8 | eqtr4d |  |-  ( -. R e. _V -> ( deg1 ` R ) = ( 1o mDeg R ) ) | 
						
							| 10 | 5 9 | pm2.61i |  |-  ( deg1 ` R ) = ( 1o mDeg R ) | 
						
							| 11 | 1 10 | eqtri |  |-  D = ( 1o mDeg R ) |