Step |
Hyp |
Ref |
Expression |
1 |
|
deg1addle.y |
|- Y = ( Poly1 ` R ) |
2 |
|
deg1addle.d |
|- D = ( deg1 ` R ) |
3 |
|
deg1addle.r |
|- ( ph -> R e. Ring ) |
4 |
|
deg1invg.b |
|- B = ( Base ` Y ) |
5 |
|
deg1invg.n |
|- N = ( invg ` Y ) |
6 |
|
deg1invg.f |
|- ( ph -> F e. B ) |
7 |
1
|
ply1lmod |
|- ( R e. Ring -> Y e. LMod ) |
8 |
3 7
|
syl |
|- ( ph -> Y e. LMod ) |
9 |
1
|
ply1sca2 |
|- ( _I ` R ) = ( Scalar ` Y ) |
10 |
|
eqid |
|- ( .s ` Y ) = ( .s ` Y ) |
11 |
|
eqid |
|- ( 1r ` ( _I ` R ) ) = ( 1r ` ( _I ` R ) ) |
12 |
|
eqid |
|- ( invg ` R ) = ( invg ` R ) |
13 |
12
|
grpinvfvi |
|- ( invg ` R ) = ( invg ` ( _I ` R ) ) |
14 |
4 5 9 10 11 13
|
lmodvneg1 |
|- ( ( Y e. LMod /\ F e. B ) -> ( ( ( invg ` R ) ` ( 1r ` ( _I ` R ) ) ) ( .s ` Y ) F ) = ( N ` F ) ) |
15 |
8 6 14
|
syl2anc |
|- ( ph -> ( ( ( invg ` R ) ` ( 1r ` ( _I ` R ) ) ) ( .s ` Y ) F ) = ( N ` F ) ) |
16 |
15
|
fveq2d |
|- ( ph -> ( D ` ( ( ( invg ` R ) ` ( 1r ` ( _I ` R ) ) ) ( .s ` Y ) F ) ) = ( D ` ( N ` F ) ) ) |
17 |
|
eqid |
|- ( RLReg ` R ) = ( RLReg ` R ) |
18 |
|
fvi |
|- ( R e. Ring -> ( _I ` R ) = R ) |
19 |
3 18
|
syl |
|- ( ph -> ( _I ` R ) = R ) |
20 |
19
|
fveq2d |
|- ( ph -> ( 1r ` ( _I ` R ) ) = ( 1r ` R ) ) |
21 |
20
|
fveq2d |
|- ( ph -> ( ( invg ` R ) ` ( 1r ` ( _I ` R ) ) ) = ( ( invg ` R ) ` ( 1r ` R ) ) ) |
22 |
|
eqid |
|- ( Unit ` R ) = ( Unit ` R ) |
23 |
17 22
|
unitrrg |
|- ( R e. Ring -> ( Unit ` R ) C_ ( RLReg ` R ) ) |
24 |
3 23
|
syl |
|- ( ph -> ( Unit ` R ) C_ ( RLReg ` R ) ) |
25 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
26 |
22 25
|
1unit |
|- ( R e. Ring -> ( 1r ` R ) e. ( Unit ` R ) ) |
27 |
22 12
|
unitnegcl |
|- ( ( R e. Ring /\ ( 1r ` R ) e. ( Unit ` R ) ) -> ( ( invg ` R ) ` ( 1r ` R ) ) e. ( Unit ` R ) ) |
28 |
3 26 27
|
syl2anc2 |
|- ( ph -> ( ( invg ` R ) ` ( 1r ` R ) ) e. ( Unit ` R ) ) |
29 |
24 28
|
sseldd |
|- ( ph -> ( ( invg ` R ) ` ( 1r ` R ) ) e. ( RLReg ` R ) ) |
30 |
21 29
|
eqeltrd |
|- ( ph -> ( ( invg ` R ) ` ( 1r ` ( _I ` R ) ) ) e. ( RLReg ` R ) ) |
31 |
1 2 3 4 17 10 30 6
|
deg1vsca |
|- ( ph -> ( D ` ( ( ( invg ` R ) ` ( 1r ` ( _I ` R ) ) ) ( .s ` Y ) F ) ) = ( D ` F ) ) |
32 |
16 31
|
eqtr3d |
|- ( ph -> ( D ` ( N ` F ) ) = ( D ` F ) ) |