Step |
Hyp |
Ref |
Expression |
1 |
|
deg1z.d |
|- D = ( deg1 ` R ) |
2 |
|
deg1z.p |
|- P = ( Poly1 ` R ) |
3 |
|
deg1z.z |
|- .0. = ( 0g ` P ) |
4 |
|
deg1nn0cl.b |
|- B = ( Base ` P ) |
5 |
|
deg1ldgdomn.e |
|- E = ( RLReg ` R ) |
6 |
|
deg1ldgdomn.a |
|- A = ( coe1 ` F ) |
7 |
|
simp1 |
|- ( ( R e. Domn /\ F e. B /\ F =/= .0. ) -> R e. Domn ) |
8 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
9 |
6 4 2 8
|
coe1f |
|- ( F e. B -> A : NN0 --> ( Base ` R ) ) |
10 |
9
|
3ad2ant2 |
|- ( ( R e. Domn /\ F e. B /\ F =/= .0. ) -> A : NN0 --> ( Base ` R ) ) |
11 |
|
domnring |
|- ( R e. Domn -> R e. Ring ) |
12 |
1 2 3 4
|
deg1nn0cl |
|- ( ( R e. Ring /\ F e. B /\ F =/= .0. ) -> ( D ` F ) e. NN0 ) |
13 |
11 12
|
syl3an1 |
|- ( ( R e. Domn /\ F e. B /\ F =/= .0. ) -> ( D ` F ) e. NN0 ) |
14 |
10 13
|
ffvelrnd |
|- ( ( R e. Domn /\ F e. B /\ F =/= .0. ) -> ( A ` ( D ` F ) ) e. ( Base ` R ) ) |
15 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
16 |
1 2 3 4 15 6
|
deg1ldg |
|- ( ( R e. Ring /\ F e. B /\ F =/= .0. ) -> ( A ` ( D ` F ) ) =/= ( 0g ` R ) ) |
17 |
11 16
|
syl3an1 |
|- ( ( R e. Domn /\ F e. B /\ F =/= .0. ) -> ( A ` ( D ` F ) ) =/= ( 0g ` R ) ) |
18 |
8 5 15
|
domnrrg |
|- ( ( R e. Domn /\ ( A ` ( D ` F ) ) e. ( Base ` R ) /\ ( A ` ( D ` F ) ) =/= ( 0g ` R ) ) -> ( A ` ( D ` F ) ) e. E ) |
19 |
7 14 17 18
|
syl3anc |
|- ( ( R e. Domn /\ F e. B /\ F =/= .0. ) -> ( A ` ( D ` F ) ) e. E ) |