Step |
Hyp |
Ref |
Expression |
1 |
|
deg1le0.d |
|- D = ( deg1 ` R ) |
2 |
|
deg1le0.p |
|- P = ( Poly1 ` R ) |
3 |
|
deg1le0.b |
|- B = ( Base ` P ) |
4 |
|
deg1le0.a |
|- A = ( algSc ` P ) |
5 |
|
eqid |
|- ( 1o mPoly R ) = ( 1o mPoly R ) |
6 |
1
|
deg1fval |
|- D = ( 1o mDeg R ) |
7 |
|
1on |
|- 1o e. On |
8 |
7
|
a1i |
|- ( ( R e. Ring /\ F e. B ) -> 1o e. On ) |
9 |
|
simpl |
|- ( ( R e. Ring /\ F e. B ) -> R e. Ring ) |
10 |
|
eqid |
|- ( PwSer1 ` R ) = ( PwSer1 ` R ) |
11 |
2 10 3
|
ply1bas |
|- B = ( Base ` ( 1o mPoly R ) ) |
12 |
2 4
|
ply1ascl |
|- A = ( algSc ` ( 1o mPoly R ) ) |
13 |
|
simpr |
|- ( ( R e. Ring /\ F e. B ) -> F e. B ) |
14 |
5 6 8 9 11 12 13
|
mdegle0 |
|- ( ( R e. Ring /\ F e. B ) -> ( ( D ` F ) <_ 0 <-> F = ( A ` ( F ` ( 1o X. { 0 } ) ) ) ) ) |
15 |
|
0nn0 |
|- 0 e. NN0 |
16 |
|
eqid |
|- ( coe1 ` F ) = ( coe1 ` F ) |
17 |
16
|
coe1fv |
|- ( ( F e. B /\ 0 e. NN0 ) -> ( ( coe1 ` F ) ` 0 ) = ( F ` ( 1o X. { 0 } ) ) ) |
18 |
13 15 17
|
sylancl |
|- ( ( R e. Ring /\ F e. B ) -> ( ( coe1 ` F ) ` 0 ) = ( F ` ( 1o X. { 0 } ) ) ) |
19 |
18
|
fveq2d |
|- ( ( R e. Ring /\ F e. B ) -> ( A ` ( ( coe1 ` F ) ` 0 ) ) = ( A ` ( F ` ( 1o X. { 0 } ) ) ) ) |
20 |
19
|
eqeq2d |
|- ( ( R e. Ring /\ F e. B ) -> ( F = ( A ` ( ( coe1 ` F ) ` 0 ) ) <-> F = ( A ` ( F ` ( 1o X. { 0 } ) ) ) ) ) |
21 |
14 20
|
bitr4d |
|- ( ( R e. Ring /\ F e. B ) -> ( ( D ` F ) <_ 0 <-> F = ( A ` ( ( coe1 ` F ) ` 0 ) ) ) ) |