| Step | Hyp | Ref | Expression | 
						
							| 1 |  | deg1le0.d |  |-  D = ( deg1 ` R ) | 
						
							| 2 |  | deg1le0.p |  |-  P = ( Poly1 ` R ) | 
						
							| 3 |  | deg1le0.b |  |-  B = ( Base ` P ) | 
						
							| 4 |  | deg1le0.a |  |-  A = ( algSc ` P ) | 
						
							| 5 |  | eqid |  |-  ( 1o mPoly R ) = ( 1o mPoly R ) | 
						
							| 6 | 1 | deg1fval |  |-  D = ( 1o mDeg R ) | 
						
							| 7 |  | 1on |  |-  1o e. On | 
						
							| 8 | 7 | a1i |  |-  ( ( R e. Ring /\ F e. B ) -> 1o e. On ) | 
						
							| 9 |  | simpl |  |-  ( ( R e. Ring /\ F e. B ) -> R e. Ring ) | 
						
							| 10 | 2 3 | ply1bas |  |-  B = ( Base ` ( 1o mPoly R ) ) | 
						
							| 11 | 2 4 | ply1ascl |  |-  A = ( algSc ` ( 1o mPoly R ) ) | 
						
							| 12 |  | simpr |  |-  ( ( R e. Ring /\ F e. B ) -> F e. B ) | 
						
							| 13 | 5 6 8 9 10 11 12 | mdegle0 |  |-  ( ( R e. Ring /\ F e. B ) -> ( ( D ` F ) <_ 0 <-> F = ( A ` ( F ` ( 1o X. { 0 } ) ) ) ) ) | 
						
							| 14 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 15 |  | eqid |  |-  ( coe1 ` F ) = ( coe1 ` F ) | 
						
							| 16 | 15 | coe1fv |  |-  ( ( F e. B /\ 0 e. NN0 ) -> ( ( coe1 ` F ) ` 0 ) = ( F ` ( 1o X. { 0 } ) ) ) | 
						
							| 17 | 12 14 16 | sylancl |  |-  ( ( R e. Ring /\ F e. B ) -> ( ( coe1 ` F ) ` 0 ) = ( F ` ( 1o X. { 0 } ) ) ) | 
						
							| 18 | 17 | fveq2d |  |-  ( ( R e. Ring /\ F e. B ) -> ( A ` ( ( coe1 ` F ) ` 0 ) ) = ( A ` ( F ` ( 1o X. { 0 } ) ) ) ) | 
						
							| 19 | 18 | eqeq2d |  |-  ( ( R e. Ring /\ F e. B ) -> ( F = ( A ` ( ( coe1 ` F ) ` 0 ) ) <-> F = ( A ` ( F ` ( 1o X. { 0 } ) ) ) ) ) | 
						
							| 20 | 13 19 | bitr4d |  |-  ( ( R e. Ring /\ F e. B ) -> ( ( D ` F ) <_ 0 <-> F = ( A ` ( ( coe1 ` F ) ` 0 ) ) ) ) |