Step |
Hyp |
Ref |
Expression |
1 |
|
deg1sclb.d |
|- D = ( deg1 ` R ) |
2 |
|
deg1sclb.p |
|- P = ( Poly1 ` R ) |
3 |
|
deg1sclb.z |
|- .0. = ( 0g ` R ) |
4 |
|
deg1sclb.1 |
|- B = ( Base ` P ) |
5 |
|
deg1sclb.2 |
|- O = ( 0g ` P ) |
6 |
|
deg1sclb.3 |
|- ( ph -> R e. Ring ) |
7 |
|
deg1sclb.4 |
|- ( ph -> F e. B ) |
8 |
|
deg1sclb.5 |
|- ( ph -> ( D ` F ) <_ 0 ) |
9 |
|
eqid |
|- ( algSc ` P ) = ( algSc ` P ) |
10 |
1 2 4 9
|
deg1le0 |
|- ( ( R e. Ring /\ F e. B ) -> ( ( D ` F ) <_ 0 <-> F = ( ( algSc ` P ) ` ( ( coe1 ` F ) ` 0 ) ) ) ) |
11 |
10
|
biimpa |
|- ( ( ( R e. Ring /\ F e. B ) /\ ( D ` F ) <_ 0 ) -> F = ( ( algSc ` P ) ` ( ( coe1 ` F ) ` 0 ) ) ) |
12 |
6 7 8 11
|
syl21anc |
|- ( ph -> F = ( ( algSc ` P ) ` ( ( coe1 ` F ) ` 0 ) ) ) |
13 |
12
|
adantr |
|- ( ( ph /\ F = O ) -> F = ( ( algSc ` P ) ` ( ( coe1 ` F ) ` 0 ) ) ) |
14 |
|
simpr |
|- ( ( ph /\ F = O ) -> F = O ) |
15 |
13 14
|
eqtr3d |
|- ( ( ph /\ F = O ) -> ( ( algSc ` P ) ` ( ( coe1 ` F ) ` 0 ) ) = O ) |
16 |
6
|
adantr |
|- ( ( ph /\ ( ( coe1 ` F ) ` 0 ) =/= .0. ) -> R e. Ring ) |
17 |
|
0nn0 |
|- 0 e. NN0 |
18 |
|
eqid |
|- ( coe1 ` F ) = ( coe1 ` F ) |
19 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
20 |
18 4 2 19
|
coe1fvalcl |
|- ( ( F e. B /\ 0 e. NN0 ) -> ( ( coe1 ` F ) ` 0 ) e. ( Base ` R ) ) |
21 |
7 17 20
|
sylancl |
|- ( ph -> ( ( coe1 ` F ) ` 0 ) e. ( Base ` R ) ) |
22 |
21
|
adantr |
|- ( ( ph /\ ( ( coe1 ` F ) ` 0 ) =/= .0. ) -> ( ( coe1 ` F ) ` 0 ) e. ( Base ` R ) ) |
23 |
|
simpr |
|- ( ( ph /\ ( ( coe1 ` F ) ` 0 ) =/= .0. ) -> ( ( coe1 ` F ) ` 0 ) =/= .0. ) |
24 |
2 9 3 5 19
|
ply1scln0 |
|- ( ( R e. Ring /\ ( ( coe1 ` F ) ` 0 ) e. ( Base ` R ) /\ ( ( coe1 ` F ) ` 0 ) =/= .0. ) -> ( ( algSc ` P ) ` ( ( coe1 ` F ) ` 0 ) ) =/= O ) |
25 |
16 22 23 24
|
syl3anc |
|- ( ( ph /\ ( ( coe1 ` F ) ` 0 ) =/= .0. ) -> ( ( algSc ` P ) ` ( ( coe1 ` F ) ` 0 ) ) =/= O ) |
26 |
25
|
ex |
|- ( ph -> ( ( ( coe1 ` F ) ` 0 ) =/= .0. -> ( ( algSc ` P ) ` ( ( coe1 ` F ) ` 0 ) ) =/= O ) ) |
27 |
26
|
necon4d |
|- ( ph -> ( ( ( algSc ` P ) ` ( ( coe1 ` F ) ` 0 ) ) = O -> ( ( coe1 ` F ) ` 0 ) = .0. ) ) |
28 |
27
|
imp |
|- ( ( ph /\ ( ( algSc ` P ) ` ( ( coe1 ` F ) ` 0 ) ) = O ) -> ( ( coe1 ` F ) ` 0 ) = .0. ) |
29 |
15 28
|
syldan |
|- ( ( ph /\ F = O ) -> ( ( coe1 ` F ) ` 0 ) = .0. ) |
30 |
12
|
adantr |
|- ( ( ph /\ ( ( coe1 ` F ) ` 0 ) = .0. ) -> F = ( ( algSc ` P ) ` ( ( coe1 ` F ) ` 0 ) ) ) |
31 |
|
simpr |
|- ( ( ph /\ ( ( coe1 ` F ) ` 0 ) = .0. ) -> ( ( coe1 ` F ) ` 0 ) = .0. ) |
32 |
31
|
fveq2d |
|- ( ( ph /\ ( ( coe1 ` F ) ` 0 ) = .0. ) -> ( ( algSc ` P ) ` ( ( coe1 ` F ) ` 0 ) ) = ( ( algSc ` P ) ` .0. ) ) |
33 |
2 9 3 5 6
|
ply1ascl0 |
|- ( ph -> ( ( algSc ` P ) ` .0. ) = O ) |
34 |
33
|
adantr |
|- ( ( ph /\ ( ( coe1 ` F ) ` 0 ) = .0. ) -> ( ( algSc ` P ) ` .0. ) = O ) |
35 |
30 32 34
|
3eqtrd |
|- ( ( ph /\ ( ( coe1 ` F ) ` 0 ) = .0. ) -> F = O ) |
36 |
29 35
|
impbida |
|- ( ph -> ( F = O <-> ( ( coe1 ` F ) ` 0 ) = .0. ) ) |