Step |
Hyp |
Ref |
Expression |
1 |
|
deg1z.d |
|- D = ( deg1 ` R ) |
2 |
|
deg1z.p |
|- P = ( Poly1 ` R ) |
3 |
|
deg1z.z |
|- .0. = ( 0g ` P ) |
4 |
|
deg1nn0cl.b |
|- B = ( Base ` P ) |
5 |
1 2 3 4
|
deg1nn0cl |
|- ( ( R e. Ring /\ F e. B /\ F =/= .0. ) -> ( D ` F ) e. NN0 ) |
6 |
|
nn0nlt0 |
|- ( ( D ` F ) e. NN0 -> -. ( D ` F ) < 0 ) |
7 |
5 6
|
syl |
|- ( ( R e. Ring /\ F e. B /\ F =/= .0. ) -> -. ( D ` F ) < 0 ) |
8 |
7
|
3expia |
|- ( ( R e. Ring /\ F e. B ) -> ( F =/= .0. -> -. ( D ` F ) < 0 ) ) |
9 |
8
|
necon4ad |
|- ( ( R e. Ring /\ F e. B ) -> ( ( D ` F ) < 0 -> F = .0. ) ) |
10 |
1 2 3
|
deg1z |
|- ( R e. Ring -> ( D ` .0. ) = -oo ) |
11 |
|
mnflt0 |
|- -oo < 0 |
12 |
10 11
|
eqbrtrdi |
|- ( R e. Ring -> ( D ` .0. ) < 0 ) |
13 |
12
|
adantr |
|- ( ( R e. Ring /\ F e. B ) -> ( D ` .0. ) < 0 ) |
14 |
|
fveq2 |
|- ( F = .0. -> ( D ` F ) = ( D ` .0. ) ) |
15 |
14
|
breq1d |
|- ( F = .0. -> ( ( D ` F ) < 0 <-> ( D ` .0. ) < 0 ) ) |
16 |
13 15
|
syl5ibrcom |
|- ( ( R e. Ring /\ F e. B ) -> ( F = .0. -> ( D ` F ) < 0 ) ) |
17 |
9 16
|
impbid |
|- ( ( R e. Ring /\ F e. B ) -> ( ( D ` F ) < 0 <-> F = .0. ) ) |