| Step | Hyp | Ref | Expression | 
						
							| 1 |  | deg1z.d |  |-  D = ( deg1 ` R ) | 
						
							| 2 |  | deg1z.p |  |-  P = ( Poly1 ` R ) | 
						
							| 3 |  | deg1z.z |  |-  .0. = ( 0g ` P ) | 
						
							| 4 |  | deg1nn0cl.b |  |-  B = ( Base ` P ) | 
						
							| 5 | 1 2 3 4 | deg1nn0cl |  |-  ( ( R e. Ring /\ F e. B /\ F =/= .0. ) -> ( D ` F ) e. NN0 ) | 
						
							| 6 |  | nn0nlt0 |  |-  ( ( D ` F ) e. NN0 -> -. ( D ` F ) < 0 ) | 
						
							| 7 | 5 6 | syl |  |-  ( ( R e. Ring /\ F e. B /\ F =/= .0. ) -> -. ( D ` F ) < 0 ) | 
						
							| 8 | 7 | 3expia |  |-  ( ( R e. Ring /\ F e. B ) -> ( F =/= .0. -> -. ( D ` F ) < 0 ) ) | 
						
							| 9 | 8 | necon4ad |  |-  ( ( R e. Ring /\ F e. B ) -> ( ( D ` F ) < 0 -> F = .0. ) ) | 
						
							| 10 | 1 2 3 | deg1z |  |-  ( R e. Ring -> ( D ` .0. ) = -oo ) | 
						
							| 11 |  | mnflt0 |  |-  -oo < 0 | 
						
							| 12 | 10 11 | eqbrtrdi |  |-  ( R e. Ring -> ( D ` .0. ) < 0 ) | 
						
							| 13 | 12 | adantr |  |-  ( ( R e. Ring /\ F e. B ) -> ( D ` .0. ) < 0 ) | 
						
							| 14 |  | fveq2 |  |-  ( F = .0. -> ( D ` F ) = ( D ` .0. ) ) | 
						
							| 15 | 14 | breq1d |  |-  ( F = .0. -> ( ( D ` F ) < 0 <-> ( D ` .0. ) < 0 ) ) | 
						
							| 16 | 13 15 | syl5ibrcom |  |-  ( ( R e. Ring /\ F e. B ) -> ( F = .0. -> ( D ` F ) < 0 ) ) | 
						
							| 17 | 9 16 | impbid |  |-  ( ( R e. Ring /\ F e. B ) -> ( ( D ` F ) < 0 <-> F = .0. ) ) |