| Step | Hyp | Ref | Expression | 
						
							| 1 |  | deg1mul2.d |  |-  D = ( deg1 ` R ) | 
						
							| 2 |  | deg1mul2.p |  |-  P = ( Poly1 ` R ) | 
						
							| 3 |  | deg1mul2.e |  |-  E = ( RLReg ` R ) | 
						
							| 4 |  | deg1mul2.b |  |-  B = ( Base ` P ) | 
						
							| 5 |  | deg1mul2.t |  |-  .x. = ( .r ` P ) | 
						
							| 6 |  | deg1mul2.z |  |-  .0. = ( 0g ` P ) | 
						
							| 7 |  | deg1mul2.r |  |-  ( ph -> R e. Ring ) | 
						
							| 8 |  | deg1mul2.fb |  |-  ( ph -> F e. B ) | 
						
							| 9 |  | deg1mul2.fz |  |-  ( ph -> F =/= .0. ) | 
						
							| 10 |  | deg1mul2.fc |  |-  ( ph -> ( ( coe1 ` F ) ` ( D ` F ) ) e. E ) | 
						
							| 11 |  | deg1mul2.gb |  |-  ( ph -> G e. B ) | 
						
							| 12 |  | deg1mul2.gz |  |-  ( ph -> G =/= .0. ) | 
						
							| 13 | 2 | ply1ring |  |-  ( R e. Ring -> P e. Ring ) | 
						
							| 14 | 7 13 | syl |  |-  ( ph -> P e. Ring ) | 
						
							| 15 | 4 5 | ringcl |  |-  ( ( P e. Ring /\ F e. B /\ G e. B ) -> ( F .x. G ) e. B ) | 
						
							| 16 | 14 8 11 15 | syl3anc |  |-  ( ph -> ( F .x. G ) e. B ) | 
						
							| 17 | 1 2 4 | deg1xrcl |  |-  ( ( F .x. G ) e. B -> ( D ` ( F .x. G ) ) e. RR* ) | 
						
							| 18 | 16 17 | syl |  |-  ( ph -> ( D ` ( F .x. G ) ) e. RR* ) | 
						
							| 19 | 1 2 6 4 | deg1nn0cl |  |-  ( ( R e. Ring /\ F e. B /\ F =/= .0. ) -> ( D ` F ) e. NN0 ) | 
						
							| 20 | 7 8 9 19 | syl3anc |  |-  ( ph -> ( D ` F ) e. NN0 ) | 
						
							| 21 | 1 2 6 4 | deg1nn0cl |  |-  ( ( R e. Ring /\ G e. B /\ G =/= .0. ) -> ( D ` G ) e. NN0 ) | 
						
							| 22 | 7 11 12 21 | syl3anc |  |-  ( ph -> ( D ` G ) e. NN0 ) | 
						
							| 23 | 20 22 | nn0addcld |  |-  ( ph -> ( ( D ` F ) + ( D ` G ) ) e. NN0 ) | 
						
							| 24 | 23 | nn0red |  |-  ( ph -> ( ( D ` F ) + ( D ` G ) ) e. RR ) | 
						
							| 25 | 24 | rexrd |  |-  ( ph -> ( ( D ` F ) + ( D ` G ) ) e. RR* ) | 
						
							| 26 | 20 | nn0red |  |-  ( ph -> ( D ` F ) e. RR ) | 
						
							| 27 | 26 | leidd |  |-  ( ph -> ( D ` F ) <_ ( D ` F ) ) | 
						
							| 28 | 22 | nn0red |  |-  ( ph -> ( D ` G ) e. RR ) | 
						
							| 29 | 28 | leidd |  |-  ( ph -> ( D ` G ) <_ ( D ` G ) ) | 
						
							| 30 | 2 1 7 4 5 8 11 20 22 27 29 | deg1mulle2 |  |-  ( ph -> ( D ` ( F .x. G ) ) <_ ( ( D ` F ) + ( D ` G ) ) ) | 
						
							| 31 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 32 | 2 5 31 4 1 6 7 8 9 11 12 | coe1mul4 |  |-  ( ph -> ( ( coe1 ` ( F .x. G ) ) ` ( ( D ` F ) + ( D ` G ) ) ) = ( ( ( coe1 ` F ) ` ( D ` F ) ) ( .r ` R ) ( ( coe1 ` G ) ` ( D ` G ) ) ) ) | 
						
							| 33 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 34 |  | eqid |  |-  ( coe1 ` G ) = ( coe1 ` G ) | 
						
							| 35 | 1 2 6 4 33 34 | deg1ldg |  |-  ( ( R e. Ring /\ G e. B /\ G =/= .0. ) -> ( ( coe1 ` G ) ` ( D ` G ) ) =/= ( 0g ` R ) ) | 
						
							| 36 | 7 11 12 35 | syl3anc |  |-  ( ph -> ( ( coe1 ` G ) ` ( D ` G ) ) =/= ( 0g ` R ) ) | 
						
							| 37 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 38 | 34 4 2 37 | coe1f |  |-  ( G e. B -> ( coe1 ` G ) : NN0 --> ( Base ` R ) ) | 
						
							| 39 | 11 38 | syl |  |-  ( ph -> ( coe1 ` G ) : NN0 --> ( Base ` R ) ) | 
						
							| 40 | 39 22 | ffvelcdmd |  |-  ( ph -> ( ( coe1 ` G ) ` ( D ` G ) ) e. ( Base ` R ) ) | 
						
							| 41 | 3 37 31 33 | rrgeq0i |  |-  ( ( ( ( coe1 ` F ) ` ( D ` F ) ) e. E /\ ( ( coe1 ` G ) ` ( D ` G ) ) e. ( Base ` R ) ) -> ( ( ( ( coe1 ` F ) ` ( D ` F ) ) ( .r ` R ) ( ( coe1 ` G ) ` ( D ` G ) ) ) = ( 0g ` R ) -> ( ( coe1 ` G ) ` ( D ` G ) ) = ( 0g ` R ) ) ) | 
						
							| 42 | 10 40 41 | syl2anc |  |-  ( ph -> ( ( ( ( coe1 ` F ) ` ( D ` F ) ) ( .r ` R ) ( ( coe1 ` G ) ` ( D ` G ) ) ) = ( 0g ` R ) -> ( ( coe1 ` G ) ` ( D ` G ) ) = ( 0g ` R ) ) ) | 
						
							| 43 | 42 | necon3d |  |-  ( ph -> ( ( ( coe1 ` G ) ` ( D ` G ) ) =/= ( 0g ` R ) -> ( ( ( coe1 ` F ) ` ( D ` F ) ) ( .r ` R ) ( ( coe1 ` G ) ` ( D ` G ) ) ) =/= ( 0g ` R ) ) ) | 
						
							| 44 | 36 43 | mpd |  |-  ( ph -> ( ( ( coe1 ` F ) ` ( D ` F ) ) ( .r ` R ) ( ( coe1 ` G ) ` ( D ` G ) ) ) =/= ( 0g ` R ) ) | 
						
							| 45 | 32 44 | eqnetrd |  |-  ( ph -> ( ( coe1 ` ( F .x. G ) ) ` ( ( D ` F ) + ( D ` G ) ) ) =/= ( 0g ` R ) ) | 
						
							| 46 |  | eqid |  |-  ( coe1 ` ( F .x. G ) ) = ( coe1 ` ( F .x. G ) ) | 
						
							| 47 | 1 2 4 33 46 | deg1ge |  |-  ( ( ( F .x. G ) e. B /\ ( ( D ` F ) + ( D ` G ) ) e. NN0 /\ ( ( coe1 ` ( F .x. G ) ) ` ( ( D ` F ) + ( D ` G ) ) ) =/= ( 0g ` R ) ) -> ( ( D ` F ) + ( D ` G ) ) <_ ( D ` ( F .x. G ) ) ) | 
						
							| 48 | 16 23 45 47 | syl3anc |  |-  ( ph -> ( ( D ` F ) + ( D ` G ) ) <_ ( D ` ( F .x. G ) ) ) | 
						
							| 49 | 18 25 30 48 | xrletrid |  |-  ( ph -> ( D ` ( F .x. G ) ) = ( ( D ` F ) + ( D ` G ) ) ) |