Step |
Hyp |
Ref |
Expression |
1 |
|
deg1mul2.d |
|- D = ( deg1 ` R ) |
2 |
|
deg1mul2.p |
|- P = ( Poly1 ` R ) |
3 |
|
deg1mul2.e |
|- E = ( RLReg ` R ) |
4 |
|
deg1mul2.b |
|- B = ( Base ` P ) |
5 |
|
deg1mul2.t |
|- .x. = ( .r ` P ) |
6 |
|
deg1mul2.z |
|- .0. = ( 0g ` P ) |
7 |
|
deg1mul2.r |
|- ( ph -> R e. Ring ) |
8 |
|
deg1mul2.fb |
|- ( ph -> F e. B ) |
9 |
|
deg1mul2.fz |
|- ( ph -> F =/= .0. ) |
10 |
|
deg1mul2.fc |
|- ( ph -> ( ( coe1 ` F ) ` ( D ` F ) ) e. E ) |
11 |
|
deg1mul2.gb |
|- ( ph -> G e. B ) |
12 |
|
deg1mul2.gz |
|- ( ph -> G =/= .0. ) |
13 |
2
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
14 |
7 13
|
syl |
|- ( ph -> P e. Ring ) |
15 |
4 5
|
ringcl |
|- ( ( P e. Ring /\ F e. B /\ G e. B ) -> ( F .x. G ) e. B ) |
16 |
14 8 11 15
|
syl3anc |
|- ( ph -> ( F .x. G ) e. B ) |
17 |
1 2 4
|
deg1xrcl |
|- ( ( F .x. G ) e. B -> ( D ` ( F .x. G ) ) e. RR* ) |
18 |
16 17
|
syl |
|- ( ph -> ( D ` ( F .x. G ) ) e. RR* ) |
19 |
1 2 6 4
|
deg1nn0cl |
|- ( ( R e. Ring /\ F e. B /\ F =/= .0. ) -> ( D ` F ) e. NN0 ) |
20 |
7 8 9 19
|
syl3anc |
|- ( ph -> ( D ` F ) e. NN0 ) |
21 |
1 2 6 4
|
deg1nn0cl |
|- ( ( R e. Ring /\ G e. B /\ G =/= .0. ) -> ( D ` G ) e. NN0 ) |
22 |
7 11 12 21
|
syl3anc |
|- ( ph -> ( D ` G ) e. NN0 ) |
23 |
20 22
|
nn0addcld |
|- ( ph -> ( ( D ` F ) + ( D ` G ) ) e. NN0 ) |
24 |
23
|
nn0red |
|- ( ph -> ( ( D ` F ) + ( D ` G ) ) e. RR ) |
25 |
24
|
rexrd |
|- ( ph -> ( ( D ` F ) + ( D ` G ) ) e. RR* ) |
26 |
20
|
nn0red |
|- ( ph -> ( D ` F ) e. RR ) |
27 |
26
|
leidd |
|- ( ph -> ( D ` F ) <_ ( D ` F ) ) |
28 |
22
|
nn0red |
|- ( ph -> ( D ` G ) e. RR ) |
29 |
28
|
leidd |
|- ( ph -> ( D ` G ) <_ ( D ` G ) ) |
30 |
2 1 7 4 5 8 11 20 22 27 29
|
deg1mulle2 |
|- ( ph -> ( D ` ( F .x. G ) ) <_ ( ( D ` F ) + ( D ` G ) ) ) |
31 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
32 |
2 5 31 4 1 6 7 8 9 11 12
|
coe1mul4 |
|- ( ph -> ( ( coe1 ` ( F .x. G ) ) ` ( ( D ` F ) + ( D ` G ) ) ) = ( ( ( coe1 ` F ) ` ( D ` F ) ) ( .r ` R ) ( ( coe1 ` G ) ` ( D ` G ) ) ) ) |
33 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
34 |
|
eqid |
|- ( coe1 ` G ) = ( coe1 ` G ) |
35 |
1 2 6 4 33 34
|
deg1ldg |
|- ( ( R e. Ring /\ G e. B /\ G =/= .0. ) -> ( ( coe1 ` G ) ` ( D ` G ) ) =/= ( 0g ` R ) ) |
36 |
7 11 12 35
|
syl3anc |
|- ( ph -> ( ( coe1 ` G ) ` ( D ` G ) ) =/= ( 0g ` R ) ) |
37 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
38 |
34 4 2 37
|
coe1f |
|- ( G e. B -> ( coe1 ` G ) : NN0 --> ( Base ` R ) ) |
39 |
11 38
|
syl |
|- ( ph -> ( coe1 ` G ) : NN0 --> ( Base ` R ) ) |
40 |
39 22
|
ffvelrnd |
|- ( ph -> ( ( coe1 ` G ) ` ( D ` G ) ) e. ( Base ` R ) ) |
41 |
3 37 31 33
|
rrgeq0i |
|- ( ( ( ( coe1 ` F ) ` ( D ` F ) ) e. E /\ ( ( coe1 ` G ) ` ( D ` G ) ) e. ( Base ` R ) ) -> ( ( ( ( coe1 ` F ) ` ( D ` F ) ) ( .r ` R ) ( ( coe1 ` G ) ` ( D ` G ) ) ) = ( 0g ` R ) -> ( ( coe1 ` G ) ` ( D ` G ) ) = ( 0g ` R ) ) ) |
42 |
10 40 41
|
syl2anc |
|- ( ph -> ( ( ( ( coe1 ` F ) ` ( D ` F ) ) ( .r ` R ) ( ( coe1 ` G ) ` ( D ` G ) ) ) = ( 0g ` R ) -> ( ( coe1 ` G ) ` ( D ` G ) ) = ( 0g ` R ) ) ) |
43 |
42
|
necon3d |
|- ( ph -> ( ( ( coe1 ` G ) ` ( D ` G ) ) =/= ( 0g ` R ) -> ( ( ( coe1 ` F ) ` ( D ` F ) ) ( .r ` R ) ( ( coe1 ` G ) ` ( D ` G ) ) ) =/= ( 0g ` R ) ) ) |
44 |
36 43
|
mpd |
|- ( ph -> ( ( ( coe1 ` F ) ` ( D ` F ) ) ( .r ` R ) ( ( coe1 ` G ) ` ( D ` G ) ) ) =/= ( 0g ` R ) ) |
45 |
32 44
|
eqnetrd |
|- ( ph -> ( ( coe1 ` ( F .x. G ) ) ` ( ( D ` F ) + ( D ` G ) ) ) =/= ( 0g ` R ) ) |
46 |
|
eqid |
|- ( coe1 ` ( F .x. G ) ) = ( coe1 ` ( F .x. G ) ) |
47 |
1 2 4 33 46
|
deg1ge |
|- ( ( ( F .x. G ) e. B /\ ( ( D ` F ) + ( D ` G ) ) e. NN0 /\ ( ( coe1 ` ( F .x. G ) ) ` ( ( D ` F ) + ( D ` G ) ) ) =/= ( 0g ` R ) ) -> ( ( D ` F ) + ( D ` G ) ) <_ ( D ` ( F .x. G ) ) ) |
48 |
16 23 45 47
|
syl3anc |
|- ( ph -> ( ( D ` F ) + ( D ` G ) ) <_ ( D ` ( F .x. G ) ) ) |
49 |
18 25 30 48
|
xrletrid |
|- ( ph -> ( D ` ( F .x. G ) ) = ( ( D ` F ) + ( D ` G ) ) ) |