Metamath Proof Explorer


Theorem deg1mulle2

Description: Produce a bound on the product of two univariate polynomials given bounds on the factors. (Contributed by Stefan O'Rear, 26-Mar-2015)

Ref Expression
Hypotheses deg1addle.y
|- Y = ( Poly1 ` R )
deg1addle.d
|- D = ( deg1 ` R )
deg1addle.r
|- ( ph -> R e. Ring )
deg1mulle2.b
|- B = ( Base ` Y )
deg1mulle2.t
|- .x. = ( .r ` Y )
deg1mulle2.f
|- ( ph -> F e. B )
deg1mulle2.g
|- ( ph -> G e. B )
deg1mulle2.j1
|- ( ph -> J e. NN0 )
deg1mulle2.k1
|- ( ph -> K e. NN0 )
deg1mulle2.j2
|- ( ph -> ( D ` F ) <_ J )
deg1mulle2.k2
|- ( ph -> ( D ` G ) <_ K )
Assertion deg1mulle2
|- ( ph -> ( D ` ( F .x. G ) ) <_ ( J + K ) )

Proof

Step Hyp Ref Expression
1 deg1addle.y
 |-  Y = ( Poly1 ` R )
2 deg1addle.d
 |-  D = ( deg1 ` R )
3 deg1addle.r
 |-  ( ph -> R e. Ring )
4 deg1mulle2.b
 |-  B = ( Base ` Y )
5 deg1mulle2.t
 |-  .x. = ( .r ` Y )
6 deg1mulle2.f
 |-  ( ph -> F e. B )
7 deg1mulle2.g
 |-  ( ph -> G e. B )
8 deg1mulle2.j1
 |-  ( ph -> J e. NN0 )
9 deg1mulle2.k1
 |-  ( ph -> K e. NN0 )
10 deg1mulle2.j2
 |-  ( ph -> ( D ` F ) <_ J )
11 deg1mulle2.k2
 |-  ( ph -> ( D ` G ) <_ K )
12 eqid
 |-  ( 1o mPoly R ) = ( 1o mPoly R )
13 2 deg1fval
 |-  D = ( 1o mDeg R )
14 1on
 |-  1o e. On
15 14 a1i
 |-  ( ph -> 1o e. On )
16 eqid
 |-  ( PwSer1 ` R ) = ( PwSer1 ` R )
17 1 16 4 ply1bas
 |-  B = ( Base ` ( 1o mPoly R ) )
18 1 12 5 ply1mulr
 |-  .x. = ( .r ` ( 1o mPoly R ) )
19 12 13 15 3 17 18 6 7 8 9 10 11 mdegmulle2
 |-  ( ph -> ( D ` ( F .x. G ) ) <_ ( J + K ) )