Step |
Hyp |
Ref |
Expression |
1 |
|
deg1z.d |
|- D = ( deg1 ` R ) |
2 |
|
deg1z.p |
|- P = ( Poly1 ` R ) |
3 |
|
deg1z.z |
|- .0. = ( 0g ` P ) |
4 |
|
deg1nn0cl.b |
|- B = ( Base ` P ) |
5 |
|
simpl |
|- ( ( R e. Ring /\ x e. ( B \ { .0. } ) ) -> R e. Ring ) |
6 |
|
eldifi |
|- ( x e. ( B \ { .0. } ) -> x e. B ) |
7 |
6
|
adantl |
|- ( ( R e. Ring /\ x e. ( B \ { .0. } ) ) -> x e. B ) |
8 |
|
eldifsni |
|- ( x e. ( B \ { .0. } ) -> x =/= .0. ) |
9 |
8
|
adantl |
|- ( ( R e. Ring /\ x e. ( B \ { .0. } ) ) -> x =/= .0. ) |
10 |
1 2 3 4
|
deg1nn0cl |
|- ( ( R e. Ring /\ x e. B /\ x =/= .0. ) -> ( D ` x ) e. NN0 ) |
11 |
5 7 9 10
|
syl3anc |
|- ( ( R e. Ring /\ x e. ( B \ { .0. } ) ) -> ( D ` x ) e. NN0 ) |
12 |
11
|
ralrimiva |
|- ( R e. Ring -> A. x e. ( B \ { .0. } ) ( D ` x ) e. NN0 ) |
13 |
1 2 4
|
deg1xrf |
|- D : B --> RR* |
14 |
|
ffun |
|- ( D : B --> RR* -> Fun D ) |
15 |
13 14
|
ax-mp |
|- Fun D |
16 |
|
difss |
|- ( B \ { .0. } ) C_ B |
17 |
13
|
fdmi |
|- dom D = B |
18 |
16 17
|
sseqtrri |
|- ( B \ { .0. } ) C_ dom D |
19 |
|
funimass4 |
|- ( ( Fun D /\ ( B \ { .0. } ) C_ dom D ) -> ( ( D " ( B \ { .0. } ) ) C_ NN0 <-> A. x e. ( B \ { .0. } ) ( D ` x ) e. NN0 ) ) |
20 |
15 18 19
|
mp2an |
|- ( ( D " ( B \ { .0. } ) ) C_ NN0 <-> A. x e. ( B \ { .0. } ) ( D ` x ) e. NN0 ) |
21 |
12 20
|
sylibr |
|- ( R e. Ring -> ( D " ( B \ { .0. } ) ) C_ NN0 ) |