Description: Degree of a nonzero univariate polynomial. (Contributed by Stefan O'Rear, 23-Mar-2015) (Revised by Mario Carneiro, 7-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | deg1z.d | |- D = ( deg1 ` R ) |
|
deg1z.p | |- P = ( Poly1 ` R ) |
||
deg1z.z | |- .0. = ( 0g ` P ) |
||
deg1nn0cl.b | |- B = ( Base ` P ) |
||
Assertion | deg1nn0cl | |- ( ( R e. Ring /\ F e. B /\ F =/= .0. ) -> ( D ` F ) e. NN0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deg1z.d | |- D = ( deg1 ` R ) |
|
2 | deg1z.p | |- P = ( Poly1 ` R ) |
|
3 | deg1z.z | |- .0. = ( 0g ` P ) |
|
4 | deg1nn0cl.b | |- B = ( Base ` P ) |
|
5 | 1 | deg1fval | |- D = ( 1o mDeg R ) |
6 | eqid | |- ( 1o mPoly R ) = ( 1o mPoly R ) |
|
7 | 6 2 3 | ply1mpl0 | |- .0. = ( 0g ` ( 1o mPoly R ) ) |
8 | eqid | |- ( PwSer1 ` R ) = ( PwSer1 ` R ) |
|
9 | 2 8 4 | ply1bas | |- B = ( Base ` ( 1o mPoly R ) ) |
10 | 5 6 7 9 | mdegnn0cl | |- ( ( R e. Ring /\ F e. B /\ F =/= .0. ) -> ( D ` F ) e. NN0 ) |