| Step | Hyp | Ref | Expression | 
						
							| 1 |  | deg1z.d |  |-  D = ( deg1 ` R ) | 
						
							| 2 |  | deg1z.p |  |-  P = ( Poly1 ` R ) | 
						
							| 3 |  | deg1z.z |  |-  .0. = ( 0g ` P ) | 
						
							| 4 |  | deg1nn0cl.b |  |-  B = ( Base ` P ) | 
						
							| 5 | 1 2 3 4 | deg1nn0cl |  |-  ( ( R e. Ring /\ F e. B /\ F =/= .0. ) -> ( D ` F ) e. NN0 ) | 
						
							| 6 | 5 | 3expia |  |-  ( ( R e. Ring /\ F e. B ) -> ( F =/= .0. -> ( D ` F ) e. NN0 ) ) | 
						
							| 7 |  | mnfnre |  |-  -oo e/ RR | 
						
							| 8 | 7 | neli |  |-  -. -oo e. RR | 
						
							| 9 |  | nn0re |  |-  ( -oo e. NN0 -> -oo e. RR ) | 
						
							| 10 | 8 9 | mto |  |-  -. -oo e. NN0 | 
						
							| 11 | 1 2 3 | deg1z |  |-  ( R e. Ring -> ( D ` .0. ) = -oo ) | 
						
							| 12 | 11 | adantr |  |-  ( ( R e. Ring /\ F e. B ) -> ( D ` .0. ) = -oo ) | 
						
							| 13 | 12 | eleq1d |  |-  ( ( R e. Ring /\ F e. B ) -> ( ( D ` .0. ) e. NN0 <-> -oo e. NN0 ) ) | 
						
							| 14 | 10 13 | mtbiri |  |-  ( ( R e. Ring /\ F e. B ) -> -. ( D ` .0. ) e. NN0 ) | 
						
							| 15 |  | fveq2 |  |-  ( F = .0. -> ( D ` F ) = ( D ` .0. ) ) | 
						
							| 16 | 15 | eleq1d |  |-  ( F = .0. -> ( ( D ` F ) e. NN0 <-> ( D ` .0. ) e. NN0 ) ) | 
						
							| 17 | 16 | notbid |  |-  ( F = .0. -> ( -. ( D ` F ) e. NN0 <-> -. ( D ` .0. ) e. NN0 ) ) | 
						
							| 18 | 14 17 | syl5ibrcom |  |-  ( ( R e. Ring /\ F e. B ) -> ( F = .0. -> -. ( D ` F ) e. NN0 ) ) | 
						
							| 19 | 18 | necon2ad |  |-  ( ( R e. Ring /\ F e. B ) -> ( ( D ` F ) e. NN0 -> F =/= .0. ) ) | 
						
							| 20 | 6 19 | impbid |  |-  ( ( R e. Ring /\ F e. B ) -> ( F =/= .0. <-> ( D ` F ) e. NN0 ) ) |