| Step | Hyp | Ref | Expression | 
						
							| 1 |  | deg1pw.d |  |-  D = ( deg1 ` R ) | 
						
							| 2 |  | deg1pw.p |  |-  P = ( Poly1 ` R ) | 
						
							| 3 |  | deg1pw.x |  |-  X = ( var1 ` R ) | 
						
							| 4 |  | deg1pw.n |  |-  N = ( mulGrp ` P ) | 
						
							| 5 |  | deg1pw.e |  |-  .^ = ( .g ` N ) | 
						
							| 6 | 2 | ply1sca |  |-  ( R e. NzRing -> R = ( Scalar ` P ) ) | 
						
							| 7 | 6 | adantr |  |-  ( ( R e. NzRing /\ F e. NN0 ) -> R = ( Scalar ` P ) ) | 
						
							| 8 | 7 | fveq2d |  |-  ( ( R e. NzRing /\ F e. NN0 ) -> ( 1r ` R ) = ( 1r ` ( Scalar ` P ) ) ) | 
						
							| 9 | 8 | oveq1d |  |-  ( ( R e. NzRing /\ F e. NN0 ) -> ( ( 1r ` R ) ( .s ` P ) ( F .^ X ) ) = ( ( 1r ` ( Scalar ` P ) ) ( .s ` P ) ( F .^ X ) ) ) | 
						
							| 10 |  | nzrring |  |-  ( R e. NzRing -> R e. Ring ) | 
						
							| 11 | 10 | adantr |  |-  ( ( R e. NzRing /\ F e. NN0 ) -> R e. Ring ) | 
						
							| 12 | 2 | ply1lmod |  |-  ( R e. Ring -> P e. LMod ) | 
						
							| 13 | 11 12 | syl |  |-  ( ( R e. NzRing /\ F e. NN0 ) -> P e. LMod ) | 
						
							| 14 |  | eqid |  |-  ( Base ` P ) = ( Base ` P ) | 
						
							| 15 | 4 14 | mgpbas |  |-  ( Base ` P ) = ( Base ` N ) | 
						
							| 16 | 2 | ply1ring |  |-  ( R e. Ring -> P e. Ring ) | 
						
							| 17 | 4 | ringmgp |  |-  ( P e. Ring -> N e. Mnd ) | 
						
							| 18 | 11 16 17 | 3syl |  |-  ( ( R e. NzRing /\ F e. NN0 ) -> N e. Mnd ) | 
						
							| 19 |  | simpr |  |-  ( ( R e. NzRing /\ F e. NN0 ) -> F e. NN0 ) | 
						
							| 20 | 3 2 14 | vr1cl |  |-  ( R e. Ring -> X e. ( Base ` P ) ) | 
						
							| 21 | 11 20 | syl |  |-  ( ( R e. NzRing /\ F e. NN0 ) -> X e. ( Base ` P ) ) | 
						
							| 22 | 15 5 18 19 21 | mulgnn0cld |  |-  ( ( R e. NzRing /\ F e. NN0 ) -> ( F .^ X ) e. ( Base ` P ) ) | 
						
							| 23 |  | eqid |  |-  ( Scalar ` P ) = ( Scalar ` P ) | 
						
							| 24 |  | eqid |  |-  ( .s ` P ) = ( .s ` P ) | 
						
							| 25 |  | eqid |  |-  ( 1r ` ( Scalar ` P ) ) = ( 1r ` ( Scalar ` P ) ) | 
						
							| 26 | 14 23 24 25 | lmodvs1 |  |-  ( ( P e. LMod /\ ( F .^ X ) e. ( Base ` P ) ) -> ( ( 1r ` ( Scalar ` P ) ) ( .s ` P ) ( F .^ X ) ) = ( F .^ X ) ) | 
						
							| 27 | 13 22 26 | syl2anc |  |-  ( ( R e. NzRing /\ F e. NN0 ) -> ( ( 1r ` ( Scalar ` P ) ) ( .s ` P ) ( F .^ X ) ) = ( F .^ X ) ) | 
						
							| 28 | 9 27 | eqtrd |  |-  ( ( R e. NzRing /\ F e. NN0 ) -> ( ( 1r ` R ) ( .s ` P ) ( F .^ X ) ) = ( F .^ X ) ) | 
						
							| 29 | 28 | fveq2d |  |-  ( ( R e. NzRing /\ F e. NN0 ) -> ( D ` ( ( 1r ` R ) ( .s ` P ) ( F .^ X ) ) ) = ( D ` ( F .^ X ) ) ) | 
						
							| 30 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 31 |  | eqid |  |-  ( 1r ` R ) = ( 1r ` R ) | 
						
							| 32 | 30 31 | ringidcl |  |-  ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) | 
						
							| 33 | 11 32 | syl |  |-  ( ( R e. NzRing /\ F e. NN0 ) -> ( 1r ` R ) e. ( Base ` R ) ) | 
						
							| 34 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 35 | 31 34 | nzrnz |  |-  ( R e. NzRing -> ( 1r ` R ) =/= ( 0g ` R ) ) | 
						
							| 36 | 35 | adantr |  |-  ( ( R e. NzRing /\ F e. NN0 ) -> ( 1r ` R ) =/= ( 0g ` R ) ) | 
						
							| 37 | 1 30 2 3 24 4 5 34 | deg1tm |  |-  ( ( R e. Ring /\ ( ( 1r ` R ) e. ( Base ` R ) /\ ( 1r ` R ) =/= ( 0g ` R ) ) /\ F e. NN0 ) -> ( D ` ( ( 1r ` R ) ( .s ` P ) ( F .^ X ) ) ) = F ) | 
						
							| 38 | 11 33 36 19 37 | syl121anc |  |-  ( ( R e. NzRing /\ F e. NN0 ) -> ( D ` ( ( 1r ` R ) ( .s ` P ) ( F .^ X ) ) ) = F ) | 
						
							| 39 | 29 38 | eqtr3d |  |-  ( ( R e. NzRing /\ F e. NN0 ) -> ( D ` ( F .^ X ) ) = F ) |