Step |
Hyp |
Ref |
Expression |
1 |
|
deg1pw.d |
|- D = ( deg1 ` R ) |
2 |
|
deg1pw.p |
|- P = ( Poly1 ` R ) |
3 |
|
deg1pw.x |
|- X = ( var1 ` R ) |
4 |
|
deg1pw.n |
|- N = ( mulGrp ` P ) |
5 |
|
deg1pw.e |
|- .^ = ( .g ` N ) |
6 |
2
|
ply1lmod |
|- ( R e. Ring -> P e. LMod ) |
7 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
8 |
2 3 4 5 7
|
ply1moncl |
|- ( ( R e. Ring /\ F e. NN0 ) -> ( F .^ X ) e. ( Base ` P ) ) |
9 |
|
eqid |
|- ( Scalar ` P ) = ( Scalar ` P ) |
10 |
|
eqid |
|- ( .s ` P ) = ( .s ` P ) |
11 |
|
eqid |
|- ( 1r ` ( Scalar ` P ) ) = ( 1r ` ( Scalar ` P ) ) |
12 |
7 9 10 11
|
lmodvs1 |
|- ( ( P e. LMod /\ ( F .^ X ) e. ( Base ` P ) ) -> ( ( 1r ` ( Scalar ` P ) ) ( .s ` P ) ( F .^ X ) ) = ( F .^ X ) ) |
13 |
6 8 12
|
syl2an2r |
|- ( ( R e. Ring /\ F e. NN0 ) -> ( ( 1r ` ( Scalar ` P ) ) ( .s ` P ) ( F .^ X ) ) = ( F .^ X ) ) |
14 |
13
|
fveq2d |
|- ( ( R e. Ring /\ F e. NN0 ) -> ( D ` ( ( 1r ` ( Scalar ` P ) ) ( .s ` P ) ( F .^ X ) ) ) = ( D ` ( F .^ X ) ) ) |
15 |
|
simpl |
|- ( ( R e. Ring /\ F e. NN0 ) -> R e. Ring ) |
16 |
2
|
ply1sca |
|- ( R e. Ring -> R = ( Scalar ` P ) ) |
17 |
16
|
fveq2d |
|- ( R e. Ring -> ( 1r ` R ) = ( 1r ` ( Scalar ` P ) ) ) |
18 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
19 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
20 |
18 19
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
21 |
17 20
|
eqeltrrd |
|- ( R e. Ring -> ( 1r ` ( Scalar ` P ) ) e. ( Base ` R ) ) |
22 |
21
|
adantr |
|- ( ( R e. Ring /\ F e. NN0 ) -> ( 1r ` ( Scalar ` P ) ) e. ( Base ` R ) ) |
23 |
|
simpr |
|- ( ( R e. Ring /\ F e. NN0 ) -> F e. NN0 ) |
24 |
1 18 2 3 10 4 5
|
deg1tmle |
|- ( ( R e. Ring /\ ( 1r ` ( Scalar ` P ) ) e. ( Base ` R ) /\ F e. NN0 ) -> ( D ` ( ( 1r ` ( Scalar ` P ) ) ( .s ` P ) ( F .^ X ) ) ) <_ F ) |
25 |
15 22 23 24
|
syl3anc |
|- ( ( R e. Ring /\ F e. NN0 ) -> ( D ` ( ( 1r ` ( Scalar ` P ) ) ( .s ` P ) ( F .^ X ) ) ) <_ F ) |
26 |
14 25
|
eqbrtrrd |
|- ( ( R e. Ring /\ F e. NN0 ) -> ( D ` ( F .^ X ) ) <_ F ) |