| Step | Hyp | Ref | Expression | 
						
							| 1 |  | deg1sclle.d |  |-  D = ( deg1 ` R ) | 
						
							| 2 |  | deg1sclle.p |  |-  P = ( Poly1 ` R ) | 
						
							| 3 |  | deg1sclle.k |  |-  K = ( Base ` R ) | 
						
							| 4 |  | deg1sclle.a |  |-  A = ( algSc ` P ) | 
						
							| 5 |  | deg1scl.z |  |-  .0. = ( 0g ` R ) | 
						
							| 6 | 1 2 3 4 | deg1sclle |  |-  ( ( R e. Ring /\ F e. K ) -> ( D ` ( A ` F ) ) <_ 0 ) | 
						
							| 7 | 6 | 3adant3 |  |-  ( ( R e. Ring /\ F e. K /\ F =/= .0. ) -> ( D ` ( A ` F ) ) <_ 0 ) | 
						
							| 8 |  | simp1 |  |-  ( ( R e. Ring /\ F e. K /\ F =/= .0. ) -> R e. Ring ) | 
						
							| 9 |  | eqid |  |-  ( Base ` P ) = ( Base ` P ) | 
						
							| 10 | 2 4 3 9 | ply1sclcl |  |-  ( ( R e. Ring /\ F e. K ) -> ( A ` F ) e. ( Base ` P ) ) | 
						
							| 11 | 10 | 3adant3 |  |-  ( ( R e. Ring /\ F e. K /\ F =/= .0. ) -> ( A ` F ) e. ( Base ` P ) ) | 
						
							| 12 |  | eqid |  |-  ( 0g ` P ) = ( 0g ` P ) | 
						
							| 13 | 2 4 5 12 3 | ply1scln0 |  |-  ( ( R e. Ring /\ F e. K /\ F =/= .0. ) -> ( A ` F ) =/= ( 0g ` P ) ) | 
						
							| 14 | 1 2 12 9 | deg1nn0cl |  |-  ( ( R e. Ring /\ ( A ` F ) e. ( Base ` P ) /\ ( A ` F ) =/= ( 0g ` P ) ) -> ( D ` ( A ` F ) ) e. NN0 ) | 
						
							| 15 | 8 11 13 14 | syl3anc |  |-  ( ( R e. Ring /\ F e. K /\ F =/= .0. ) -> ( D ` ( A ` F ) ) e. NN0 ) | 
						
							| 16 |  | nn0le0eq0 |  |-  ( ( D ` ( A ` F ) ) e. NN0 -> ( ( D ` ( A ` F ) ) <_ 0 <-> ( D ` ( A ` F ) ) = 0 ) ) | 
						
							| 17 | 15 16 | syl |  |-  ( ( R e. Ring /\ F e. K /\ F =/= .0. ) -> ( ( D ` ( A ` F ) ) <_ 0 <-> ( D ` ( A ` F ) ) = 0 ) ) | 
						
							| 18 | 7 17 | mpbid |  |-  ( ( R e. Ring /\ F e. K /\ F =/= .0. ) -> ( D ` ( A ` F ) ) = 0 ) |