| Step | Hyp | Ref | Expression | 
						
							| 1 |  | deg1sclle.d |  |-  D = ( deg1 ` R ) | 
						
							| 2 |  | deg1sclle.p |  |-  P = ( Poly1 ` R ) | 
						
							| 3 |  | deg1sclle.k |  |-  K = ( Base ` R ) | 
						
							| 4 |  | deg1sclle.a |  |-  A = ( algSc ` P ) | 
						
							| 5 | 2 4 3 | ply1sclid |  |-  ( ( R e. Ring /\ F e. K ) -> F = ( ( coe1 ` ( A ` F ) ) ` 0 ) ) | 
						
							| 6 | 5 | fveq2d |  |-  ( ( R e. Ring /\ F e. K ) -> ( A ` F ) = ( A ` ( ( coe1 ` ( A ` F ) ) ` 0 ) ) ) | 
						
							| 7 |  | eqid |  |-  ( Base ` P ) = ( Base ` P ) | 
						
							| 8 | 2 4 3 7 | ply1sclcl |  |-  ( ( R e. Ring /\ F e. K ) -> ( A ` F ) e. ( Base ` P ) ) | 
						
							| 9 | 1 2 7 4 | deg1le0 |  |-  ( ( R e. Ring /\ ( A ` F ) e. ( Base ` P ) ) -> ( ( D ` ( A ` F ) ) <_ 0 <-> ( A ` F ) = ( A ` ( ( coe1 ` ( A ` F ) ) ` 0 ) ) ) ) | 
						
							| 10 | 8 9 | syldan |  |-  ( ( R e. Ring /\ F e. K ) -> ( ( D ` ( A ` F ) ) <_ 0 <-> ( A ` F ) = ( A ` ( ( coe1 ` ( A ` F ) ) ` 0 ) ) ) ) | 
						
							| 11 | 6 10 | mpbird |  |-  ( ( R e. Ring /\ F e. K ) -> ( D ` ( A ` F ) ) <_ 0 ) |