Step |
Hyp |
Ref |
Expression |
1 |
|
deg1addle.y |
|- Y = ( Poly1 ` R ) |
2 |
|
deg1addle.d |
|- D = ( deg1 ` R ) |
3 |
|
deg1addle.r |
|- ( ph -> R e. Ring ) |
4 |
|
deg1suble.b |
|- B = ( Base ` Y ) |
5 |
|
deg1suble.m |
|- .- = ( -g ` Y ) |
6 |
|
deg1suble.f |
|- ( ph -> F e. B ) |
7 |
|
deg1suble.g |
|- ( ph -> G e. B ) |
8 |
|
deg1sub.l |
|- ( ph -> ( D ` G ) < ( D ` F ) ) |
9 |
|
eqid |
|- ( +g ` Y ) = ( +g ` Y ) |
10 |
|
eqid |
|- ( invg ` Y ) = ( invg ` Y ) |
11 |
4 9 10 5
|
grpsubval |
|- ( ( F e. B /\ G e. B ) -> ( F .- G ) = ( F ( +g ` Y ) ( ( invg ` Y ) ` G ) ) ) |
12 |
6 7 11
|
syl2anc |
|- ( ph -> ( F .- G ) = ( F ( +g ` Y ) ( ( invg ` Y ) ` G ) ) ) |
13 |
12
|
fveq2d |
|- ( ph -> ( D ` ( F .- G ) ) = ( D ` ( F ( +g ` Y ) ( ( invg ` Y ) ` G ) ) ) ) |
14 |
1
|
ply1ring |
|- ( R e. Ring -> Y e. Ring ) |
15 |
|
ringgrp |
|- ( Y e. Ring -> Y e. Grp ) |
16 |
3 14 15
|
3syl |
|- ( ph -> Y e. Grp ) |
17 |
4 10
|
grpinvcl |
|- ( ( Y e. Grp /\ G e. B ) -> ( ( invg ` Y ) ` G ) e. B ) |
18 |
16 7 17
|
syl2anc |
|- ( ph -> ( ( invg ` Y ) ` G ) e. B ) |
19 |
1 2 3 4 10 7
|
deg1invg |
|- ( ph -> ( D ` ( ( invg ` Y ) ` G ) ) = ( D ` G ) ) |
20 |
19 8
|
eqbrtrd |
|- ( ph -> ( D ` ( ( invg ` Y ) ` G ) ) < ( D ` F ) ) |
21 |
1 2 3 4 9 6 18 20
|
deg1add |
|- ( ph -> ( D ` ( F ( +g ` Y ) ( ( invg ` Y ) ` G ) ) ) = ( D ` F ) ) |
22 |
13 21
|
eqtrd |
|- ( ph -> ( D ` ( F .- G ) ) = ( D ` F ) ) |