Metamath Proof Explorer


Theorem deg1sub

Description: Exact degree of a difference of two polynomials of unequal degree. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses deg1addle.y
|- Y = ( Poly1 ` R )
deg1addle.d
|- D = ( deg1 ` R )
deg1addle.r
|- ( ph -> R e. Ring )
deg1suble.b
|- B = ( Base ` Y )
deg1suble.m
|- .- = ( -g ` Y )
deg1suble.f
|- ( ph -> F e. B )
deg1suble.g
|- ( ph -> G e. B )
deg1sub.l
|- ( ph -> ( D ` G ) < ( D ` F ) )
Assertion deg1sub
|- ( ph -> ( D ` ( F .- G ) ) = ( D ` F ) )

Proof

Step Hyp Ref Expression
1 deg1addle.y
 |-  Y = ( Poly1 ` R )
2 deg1addle.d
 |-  D = ( deg1 ` R )
3 deg1addle.r
 |-  ( ph -> R e. Ring )
4 deg1suble.b
 |-  B = ( Base ` Y )
5 deg1suble.m
 |-  .- = ( -g ` Y )
6 deg1suble.f
 |-  ( ph -> F e. B )
7 deg1suble.g
 |-  ( ph -> G e. B )
8 deg1sub.l
 |-  ( ph -> ( D ` G ) < ( D ` F ) )
9 eqid
 |-  ( +g ` Y ) = ( +g ` Y )
10 eqid
 |-  ( invg ` Y ) = ( invg ` Y )
11 4 9 10 5 grpsubval
 |-  ( ( F e. B /\ G e. B ) -> ( F .- G ) = ( F ( +g ` Y ) ( ( invg ` Y ) ` G ) ) )
12 6 7 11 syl2anc
 |-  ( ph -> ( F .- G ) = ( F ( +g ` Y ) ( ( invg ` Y ) ` G ) ) )
13 12 fveq2d
 |-  ( ph -> ( D ` ( F .- G ) ) = ( D ` ( F ( +g ` Y ) ( ( invg ` Y ) ` G ) ) ) )
14 1 ply1ring
 |-  ( R e. Ring -> Y e. Ring )
15 ringgrp
 |-  ( Y e. Ring -> Y e. Grp )
16 3 14 15 3syl
 |-  ( ph -> Y e. Grp )
17 4 10 grpinvcl
 |-  ( ( Y e. Grp /\ G e. B ) -> ( ( invg ` Y ) ` G ) e. B )
18 16 7 17 syl2anc
 |-  ( ph -> ( ( invg ` Y ) ` G ) e. B )
19 1 2 3 4 10 7 deg1invg
 |-  ( ph -> ( D ` ( ( invg ` Y ) ` G ) ) = ( D ` G ) )
20 19 8 eqbrtrd
 |-  ( ph -> ( D ` ( ( invg ` Y ) ` G ) ) < ( D ` F ) )
21 1 2 3 4 9 6 18 20 deg1add
 |-  ( ph -> ( D ` ( F ( +g ` Y ) ( ( invg ` Y ) ` G ) ) ) = ( D ` F ) )
22 13 21 eqtrd
 |-  ( ph -> ( D ` ( F .- G ) ) = ( D ` F ) )