| Step | Hyp | Ref | Expression | 
						
							| 1 |  | deg1addle.y |  |-  Y = ( Poly1 ` R ) | 
						
							| 2 |  | deg1addle.d |  |-  D = ( deg1 ` R ) | 
						
							| 3 |  | deg1addle.r |  |-  ( ph -> R e. Ring ) | 
						
							| 4 |  | deg1suble.b |  |-  B = ( Base ` Y ) | 
						
							| 5 |  | deg1suble.m |  |-  .- = ( -g ` Y ) | 
						
							| 6 |  | deg1suble.f |  |-  ( ph -> F e. B ) | 
						
							| 7 |  | deg1suble.g |  |-  ( ph -> G e. B ) | 
						
							| 8 |  | deg1sub.l |  |-  ( ph -> ( D ` G ) < ( D ` F ) ) | 
						
							| 9 |  | eqid |  |-  ( +g ` Y ) = ( +g ` Y ) | 
						
							| 10 |  | eqid |  |-  ( invg ` Y ) = ( invg ` Y ) | 
						
							| 11 | 4 9 10 5 | grpsubval |  |-  ( ( F e. B /\ G e. B ) -> ( F .- G ) = ( F ( +g ` Y ) ( ( invg ` Y ) ` G ) ) ) | 
						
							| 12 | 6 7 11 | syl2anc |  |-  ( ph -> ( F .- G ) = ( F ( +g ` Y ) ( ( invg ` Y ) ` G ) ) ) | 
						
							| 13 | 12 | fveq2d |  |-  ( ph -> ( D ` ( F .- G ) ) = ( D ` ( F ( +g ` Y ) ( ( invg ` Y ) ` G ) ) ) ) | 
						
							| 14 | 1 | ply1ring |  |-  ( R e. Ring -> Y e. Ring ) | 
						
							| 15 |  | ringgrp |  |-  ( Y e. Ring -> Y e. Grp ) | 
						
							| 16 | 3 14 15 | 3syl |  |-  ( ph -> Y e. Grp ) | 
						
							| 17 | 4 10 | grpinvcl |  |-  ( ( Y e. Grp /\ G e. B ) -> ( ( invg ` Y ) ` G ) e. B ) | 
						
							| 18 | 16 7 17 | syl2anc |  |-  ( ph -> ( ( invg ` Y ) ` G ) e. B ) | 
						
							| 19 | 1 2 3 4 10 7 | deg1invg |  |-  ( ph -> ( D ` ( ( invg ` Y ) ` G ) ) = ( D ` G ) ) | 
						
							| 20 | 19 8 | eqbrtrd |  |-  ( ph -> ( D ` ( ( invg ` Y ) ` G ) ) < ( D ` F ) ) | 
						
							| 21 | 1 2 3 4 9 6 18 20 | deg1add |  |-  ( ph -> ( D ` ( F ( +g ` Y ) ( ( invg ` Y ) ` G ) ) ) = ( D ` F ) ) | 
						
							| 22 | 13 21 | eqtrd |  |-  ( ph -> ( D ` ( F .- G ) ) = ( D ` F ) ) |