Step |
Hyp |
Ref |
Expression |
1 |
|
deg1sublt.d |
|- D = ( deg1 ` R ) |
2 |
|
deg1sublt.p |
|- P = ( Poly1 ` R ) |
3 |
|
deg1sublt.b |
|- B = ( Base ` P ) |
4 |
|
deg1sublt.m |
|- .- = ( -g ` P ) |
5 |
|
deg1sublt.l |
|- ( ph -> L e. NN0 ) |
6 |
|
deg1sublt.r |
|- ( ph -> R e. Ring ) |
7 |
|
deg1sublt.fb |
|- ( ph -> F e. B ) |
8 |
|
deg1sublt.fd |
|- ( ph -> ( D ` F ) <_ L ) |
9 |
|
deg1sublt.gb |
|- ( ph -> G e. B ) |
10 |
|
deg1sublt.gd |
|- ( ph -> ( D ` G ) <_ L ) |
11 |
|
deg1sublt.a |
|- A = ( coe1 ` F ) |
12 |
|
deg1sublt.c |
|- C = ( coe1 ` G ) |
13 |
|
deg1sublt.eq |
|- ( ph -> ( ( coe1 ` F ) ` L ) = ( ( coe1 ` G ) ` L ) ) |
14 |
|
eqid |
|- ( 0g ` P ) = ( 0g ` P ) |
15 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
16 |
|
eqid |
|- ( coe1 ` ( F .- G ) ) = ( coe1 ` ( F .- G ) ) |
17 |
2
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
18 |
|
ringgrp |
|- ( P e. Ring -> P e. Grp ) |
19 |
6 17 18
|
3syl |
|- ( ph -> P e. Grp ) |
20 |
3 4
|
grpsubcl |
|- ( ( P e. Grp /\ F e. B /\ G e. B ) -> ( F .- G ) e. B ) |
21 |
19 7 9 20
|
syl3anc |
|- ( ph -> ( F .- G ) e. B ) |
22 |
|
eqid |
|- ( -g ` R ) = ( -g ` R ) |
23 |
2 3 4 22
|
coe1subfv |
|- ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ L e. NN0 ) -> ( ( coe1 ` ( F .- G ) ) ` L ) = ( ( ( coe1 ` F ) ` L ) ( -g ` R ) ( ( coe1 ` G ) ` L ) ) ) |
24 |
6 7 9 5 23
|
syl31anc |
|- ( ph -> ( ( coe1 ` ( F .- G ) ) ` L ) = ( ( ( coe1 ` F ) ` L ) ( -g ` R ) ( ( coe1 ` G ) ` L ) ) ) |
25 |
13
|
oveq1d |
|- ( ph -> ( ( ( coe1 ` F ) ` L ) ( -g ` R ) ( ( coe1 ` G ) ` L ) ) = ( ( ( coe1 ` G ) ` L ) ( -g ` R ) ( ( coe1 ` G ) ` L ) ) ) |
26 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
27 |
6 26
|
syl |
|- ( ph -> R e. Grp ) |
28 |
|
eqid |
|- ( coe1 ` G ) = ( coe1 ` G ) |
29 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
30 |
28 3 2 29
|
coe1f |
|- ( G e. B -> ( coe1 ` G ) : NN0 --> ( Base ` R ) ) |
31 |
9 30
|
syl |
|- ( ph -> ( coe1 ` G ) : NN0 --> ( Base ` R ) ) |
32 |
31 5
|
ffvelrnd |
|- ( ph -> ( ( coe1 ` G ) ` L ) e. ( Base ` R ) ) |
33 |
29 15 22
|
grpsubid |
|- ( ( R e. Grp /\ ( ( coe1 ` G ) ` L ) e. ( Base ` R ) ) -> ( ( ( coe1 ` G ) ` L ) ( -g ` R ) ( ( coe1 ` G ) ` L ) ) = ( 0g ` R ) ) |
34 |
27 32 33
|
syl2anc |
|- ( ph -> ( ( ( coe1 ` G ) ` L ) ( -g ` R ) ( ( coe1 ` G ) ` L ) ) = ( 0g ` R ) ) |
35 |
24 25 34
|
3eqtrd |
|- ( ph -> ( ( coe1 ` ( F .- G ) ) ` L ) = ( 0g ` R ) ) |
36 |
1 2 14 3 15 16 6 21 5 35
|
deg1ldgn |
|- ( ph -> ( D ` ( F .- G ) ) =/= L ) |
37 |
36
|
neneqd |
|- ( ph -> -. ( D ` ( F .- G ) ) = L ) |
38 |
1 2 3
|
deg1xrcl |
|- ( ( F .- G ) e. B -> ( D ` ( F .- G ) ) e. RR* ) |
39 |
21 38
|
syl |
|- ( ph -> ( D ` ( F .- G ) ) e. RR* ) |
40 |
1 2 3
|
deg1xrcl |
|- ( G e. B -> ( D ` G ) e. RR* ) |
41 |
9 40
|
syl |
|- ( ph -> ( D ` G ) e. RR* ) |
42 |
1 2 3
|
deg1xrcl |
|- ( F e. B -> ( D ` F ) e. RR* ) |
43 |
7 42
|
syl |
|- ( ph -> ( D ` F ) e. RR* ) |
44 |
41 43
|
ifcld |
|- ( ph -> if ( ( D ` F ) <_ ( D ` G ) , ( D ` G ) , ( D ` F ) ) e. RR* ) |
45 |
5
|
nn0red |
|- ( ph -> L e. RR ) |
46 |
45
|
rexrd |
|- ( ph -> L e. RR* ) |
47 |
2 1 6 3 4 7 9
|
deg1suble |
|- ( ph -> ( D ` ( F .- G ) ) <_ if ( ( D ` F ) <_ ( D ` G ) , ( D ` G ) , ( D ` F ) ) ) |
48 |
|
xrmaxle |
|- ( ( ( D ` F ) e. RR* /\ ( D ` G ) e. RR* /\ L e. RR* ) -> ( if ( ( D ` F ) <_ ( D ` G ) , ( D ` G ) , ( D ` F ) ) <_ L <-> ( ( D ` F ) <_ L /\ ( D ` G ) <_ L ) ) ) |
49 |
43 41 46 48
|
syl3anc |
|- ( ph -> ( if ( ( D ` F ) <_ ( D ` G ) , ( D ` G ) , ( D ` F ) ) <_ L <-> ( ( D ` F ) <_ L /\ ( D ` G ) <_ L ) ) ) |
50 |
8 10 49
|
mpbir2and |
|- ( ph -> if ( ( D ` F ) <_ ( D ` G ) , ( D ` G ) , ( D ` F ) ) <_ L ) |
51 |
39 44 46 47 50
|
xrletrd |
|- ( ph -> ( D ` ( F .- G ) ) <_ L ) |
52 |
|
xrleloe |
|- ( ( ( D ` ( F .- G ) ) e. RR* /\ L e. RR* ) -> ( ( D ` ( F .- G ) ) <_ L <-> ( ( D ` ( F .- G ) ) < L \/ ( D ` ( F .- G ) ) = L ) ) ) |
53 |
39 46 52
|
syl2anc |
|- ( ph -> ( ( D ` ( F .- G ) ) <_ L <-> ( ( D ` ( F .- G ) ) < L \/ ( D ` ( F .- G ) ) = L ) ) ) |
54 |
51 53
|
mpbid |
|- ( ph -> ( ( D ` ( F .- G ) ) < L \/ ( D ` ( F .- G ) ) = L ) ) |
55 |
|
orel2 |
|- ( -. ( D ` ( F .- G ) ) = L -> ( ( ( D ` ( F .- G ) ) < L \/ ( D ` ( F .- G ) ) = L ) -> ( D ` ( F .- G ) ) < L ) ) |
56 |
37 54 55
|
sylc |
|- ( ph -> ( D ` ( F .- G ) ) < L ) |