Step |
Hyp |
Ref |
Expression |
1 |
|
deg1tm.d |
|- D = ( deg1 ` R ) |
2 |
|
deg1tm.k |
|- K = ( Base ` R ) |
3 |
|
deg1tm.p |
|- P = ( Poly1 ` R ) |
4 |
|
deg1tm.x |
|- X = ( var1 ` R ) |
5 |
|
deg1tm.m |
|- .x. = ( .s ` P ) |
6 |
|
deg1tm.n |
|- N = ( mulGrp ` P ) |
7 |
|
deg1tm.e |
|- .^ = ( .g ` N ) |
8 |
|
deg1tm.z |
|- .0. = ( 0g ` R ) |
9 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
10 |
2 3 4 5 6 7 9
|
ply1tmcl |
|- ( ( R e. Ring /\ C e. K /\ F e. NN0 ) -> ( C .x. ( F .^ X ) ) e. ( Base ` P ) ) |
11 |
10
|
3adant2r |
|- ( ( R e. Ring /\ ( C e. K /\ C =/= .0. ) /\ F e. NN0 ) -> ( C .x. ( F .^ X ) ) e. ( Base ` P ) ) |
12 |
1 3 9
|
deg1xrcl |
|- ( ( C .x. ( F .^ X ) ) e. ( Base ` P ) -> ( D ` ( C .x. ( F .^ X ) ) ) e. RR* ) |
13 |
11 12
|
syl |
|- ( ( R e. Ring /\ ( C e. K /\ C =/= .0. ) /\ F e. NN0 ) -> ( D ` ( C .x. ( F .^ X ) ) ) e. RR* ) |
14 |
|
simp3 |
|- ( ( R e. Ring /\ ( C e. K /\ C =/= .0. ) /\ F e. NN0 ) -> F e. NN0 ) |
15 |
14
|
nn0red |
|- ( ( R e. Ring /\ ( C e. K /\ C =/= .0. ) /\ F e. NN0 ) -> F e. RR ) |
16 |
15
|
rexrd |
|- ( ( R e. Ring /\ ( C e. K /\ C =/= .0. ) /\ F e. NN0 ) -> F e. RR* ) |
17 |
1 2 3 4 5 6 7
|
deg1tmle |
|- ( ( R e. Ring /\ C e. K /\ F e. NN0 ) -> ( D ` ( C .x. ( F .^ X ) ) ) <_ F ) |
18 |
17
|
3adant2r |
|- ( ( R e. Ring /\ ( C e. K /\ C =/= .0. ) /\ F e. NN0 ) -> ( D ` ( C .x. ( F .^ X ) ) ) <_ F ) |
19 |
8 2 3 4 5 6 7
|
coe1tmfv1 |
|- ( ( R e. Ring /\ C e. K /\ F e. NN0 ) -> ( ( coe1 ` ( C .x. ( F .^ X ) ) ) ` F ) = C ) |
20 |
19
|
3adant2r |
|- ( ( R e. Ring /\ ( C e. K /\ C =/= .0. ) /\ F e. NN0 ) -> ( ( coe1 ` ( C .x. ( F .^ X ) ) ) ` F ) = C ) |
21 |
|
simp2r |
|- ( ( R e. Ring /\ ( C e. K /\ C =/= .0. ) /\ F e. NN0 ) -> C =/= .0. ) |
22 |
20 21
|
eqnetrd |
|- ( ( R e. Ring /\ ( C e. K /\ C =/= .0. ) /\ F e. NN0 ) -> ( ( coe1 ` ( C .x. ( F .^ X ) ) ) ` F ) =/= .0. ) |
23 |
|
eqid |
|- ( coe1 ` ( C .x. ( F .^ X ) ) ) = ( coe1 ` ( C .x. ( F .^ X ) ) ) |
24 |
1 3 9 8 23
|
deg1ge |
|- ( ( ( C .x. ( F .^ X ) ) e. ( Base ` P ) /\ F e. NN0 /\ ( ( coe1 ` ( C .x. ( F .^ X ) ) ) ` F ) =/= .0. ) -> F <_ ( D ` ( C .x. ( F .^ X ) ) ) ) |
25 |
11 14 22 24
|
syl3anc |
|- ( ( R e. Ring /\ ( C e. K /\ C =/= .0. ) /\ F e. NN0 ) -> F <_ ( D ` ( C .x. ( F .^ X ) ) ) ) |
26 |
13 16 18 25
|
xrletrid |
|- ( ( R e. Ring /\ ( C e. K /\ C =/= .0. ) /\ F e. NN0 ) -> ( D ` ( C .x. ( F .^ X ) ) ) = F ) |