| Step | Hyp | Ref | Expression | 
						
							| 1 |  | deg1tm.d |  |-  D = ( deg1 ` R ) | 
						
							| 2 |  | deg1tm.k |  |-  K = ( Base ` R ) | 
						
							| 3 |  | deg1tm.p |  |-  P = ( Poly1 ` R ) | 
						
							| 4 |  | deg1tm.x |  |-  X = ( var1 ` R ) | 
						
							| 5 |  | deg1tm.m |  |-  .x. = ( .s ` P ) | 
						
							| 6 |  | deg1tm.n |  |-  N = ( mulGrp ` P ) | 
						
							| 7 |  | deg1tm.e |  |-  .^ = ( .g ` N ) | 
						
							| 8 |  | deg1tm.z |  |-  .0. = ( 0g ` R ) | 
						
							| 9 |  | eqid |  |-  ( Base ` P ) = ( Base ` P ) | 
						
							| 10 | 2 3 4 5 6 7 9 | ply1tmcl |  |-  ( ( R e. Ring /\ C e. K /\ F e. NN0 ) -> ( C .x. ( F .^ X ) ) e. ( Base ` P ) ) | 
						
							| 11 | 10 | 3adant2r |  |-  ( ( R e. Ring /\ ( C e. K /\ C =/= .0. ) /\ F e. NN0 ) -> ( C .x. ( F .^ X ) ) e. ( Base ` P ) ) | 
						
							| 12 | 1 3 9 | deg1xrcl |  |-  ( ( C .x. ( F .^ X ) ) e. ( Base ` P ) -> ( D ` ( C .x. ( F .^ X ) ) ) e. RR* ) | 
						
							| 13 | 11 12 | syl |  |-  ( ( R e. Ring /\ ( C e. K /\ C =/= .0. ) /\ F e. NN0 ) -> ( D ` ( C .x. ( F .^ X ) ) ) e. RR* ) | 
						
							| 14 |  | simp3 |  |-  ( ( R e. Ring /\ ( C e. K /\ C =/= .0. ) /\ F e. NN0 ) -> F e. NN0 ) | 
						
							| 15 | 14 | nn0red |  |-  ( ( R e. Ring /\ ( C e. K /\ C =/= .0. ) /\ F e. NN0 ) -> F e. RR ) | 
						
							| 16 | 15 | rexrd |  |-  ( ( R e. Ring /\ ( C e. K /\ C =/= .0. ) /\ F e. NN0 ) -> F e. RR* ) | 
						
							| 17 | 1 2 3 4 5 6 7 | deg1tmle |  |-  ( ( R e. Ring /\ C e. K /\ F e. NN0 ) -> ( D ` ( C .x. ( F .^ X ) ) ) <_ F ) | 
						
							| 18 | 17 | 3adant2r |  |-  ( ( R e. Ring /\ ( C e. K /\ C =/= .0. ) /\ F e. NN0 ) -> ( D ` ( C .x. ( F .^ X ) ) ) <_ F ) | 
						
							| 19 | 8 2 3 4 5 6 7 | coe1tmfv1 |  |-  ( ( R e. Ring /\ C e. K /\ F e. NN0 ) -> ( ( coe1 ` ( C .x. ( F .^ X ) ) ) ` F ) = C ) | 
						
							| 20 | 19 | 3adant2r |  |-  ( ( R e. Ring /\ ( C e. K /\ C =/= .0. ) /\ F e. NN0 ) -> ( ( coe1 ` ( C .x. ( F .^ X ) ) ) ` F ) = C ) | 
						
							| 21 |  | simp2r |  |-  ( ( R e. Ring /\ ( C e. K /\ C =/= .0. ) /\ F e. NN0 ) -> C =/= .0. ) | 
						
							| 22 | 20 21 | eqnetrd |  |-  ( ( R e. Ring /\ ( C e. K /\ C =/= .0. ) /\ F e. NN0 ) -> ( ( coe1 ` ( C .x. ( F .^ X ) ) ) ` F ) =/= .0. ) | 
						
							| 23 |  | eqid |  |-  ( coe1 ` ( C .x. ( F .^ X ) ) ) = ( coe1 ` ( C .x. ( F .^ X ) ) ) | 
						
							| 24 | 1 3 9 8 23 | deg1ge |  |-  ( ( ( C .x. ( F .^ X ) ) e. ( Base ` P ) /\ F e. NN0 /\ ( ( coe1 ` ( C .x. ( F .^ X ) ) ) ` F ) =/= .0. ) -> F <_ ( D ` ( C .x. ( F .^ X ) ) ) ) | 
						
							| 25 | 11 14 22 24 | syl3anc |  |-  ( ( R e. Ring /\ ( C e. K /\ C =/= .0. ) /\ F e. NN0 ) -> F <_ ( D ` ( C .x. ( F .^ X ) ) ) ) | 
						
							| 26 | 13 16 18 25 | xrletrid |  |-  ( ( R e. Ring /\ ( C e. K /\ C =/= .0. ) /\ F e. NN0 ) -> ( D ` ( C .x. ( F .^ X ) ) ) = F ) |