Metamath Proof Explorer


Theorem deg1tmle

Description: Limiting degree of a polynomial term. (Contributed by Stefan O'Rear, 27-Mar-2015)

Ref Expression
Hypotheses deg1tm.d
|- D = ( deg1 ` R )
deg1tm.k
|- K = ( Base ` R )
deg1tm.p
|- P = ( Poly1 ` R )
deg1tm.x
|- X = ( var1 ` R )
deg1tm.m
|- .x. = ( .s ` P )
deg1tm.n
|- N = ( mulGrp ` P )
deg1tm.e
|- .^ = ( .g ` N )
Assertion deg1tmle
|- ( ( R e. Ring /\ C e. K /\ F e. NN0 ) -> ( D ` ( C .x. ( F .^ X ) ) ) <_ F )

Proof

Step Hyp Ref Expression
1 deg1tm.d
 |-  D = ( deg1 ` R )
2 deg1tm.k
 |-  K = ( Base ` R )
3 deg1tm.p
 |-  P = ( Poly1 ` R )
4 deg1tm.x
 |-  X = ( var1 ` R )
5 deg1tm.m
 |-  .x. = ( .s ` P )
6 deg1tm.n
 |-  N = ( mulGrp ` P )
7 deg1tm.e
 |-  .^ = ( .g ` N )
8 eqid
 |-  ( 0g ` R ) = ( 0g ` R )
9 simpl1
 |-  ( ( ( R e. Ring /\ C e. K /\ F e. NN0 ) /\ ( x e. NN0 /\ F < x ) ) -> R e. Ring )
10 simpl2
 |-  ( ( ( R e. Ring /\ C e. K /\ F e. NN0 ) /\ ( x e. NN0 /\ F < x ) ) -> C e. K )
11 simpl3
 |-  ( ( ( R e. Ring /\ C e. K /\ F e. NN0 ) /\ ( x e. NN0 /\ F < x ) ) -> F e. NN0 )
12 simprl
 |-  ( ( ( R e. Ring /\ C e. K /\ F e. NN0 ) /\ ( x e. NN0 /\ F < x ) ) -> x e. NN0 )
13 11 nn0red
 |-  ( ( ( R e. Ring /\ C e. K /\ F e. NN0 ) /\ ( x e. NN0 /\ F < x ) ) -> F e. RR )
14 simprr
 |-  ( ( ( R e. Ring /\ C e. K /\ F e. NN0 ) /\ ( x e. NN0 /\ F < x ) ) -> F < x )
15 13 14 ltned
 |-  ( ( ( R e. Ring /\ C e. K /\ F e. NN0 ) /\ ( x e. NN0 /\ F < x ) ) -> F =/= x )
16 8 2 3 4 5 6 7 9 10 11 12 15 coe1tmfv2
 |-  ( ( ( R e. Ring /\ C e. K /\ F e. NN0 ) /\ ( x e. NN0 /\ F < x ) ) -> ( ( coe1 ` ( C .x. ( F .^ X ) ) ) ` x ) = ( 0g ` R ) )
17 16 expr
 |-  ( ( ( R e. Ring /\ C e. K /\ F e. NN0 ) /\ x e. NN0 ) -> ( F < x -> ( ( coe1 ` ( C .x. ( F .^ X ) ) ) ` x ) = ( 0g ` R ) ) )
18 17 ralrimiva
 |-  ( ( R e. Ring /\ C e. K /\ F e. NN0 ) -> A. x e. NN0 ( F < x -> ( ( coe1 ` ( C .x. ( F .^ X ) ) ) ` x ) = ( 0g ` R ) ) )
19 eqid
 |-  ( Base ` P ) = ( Base ` P )
20 2 3 4 5 6 7 19 ply1tmcl
 |-  ( ( R e. Ring /\ C e. K /\ F e. NN0 ) -> ( C .x. ( F .^ X ) ) e. ( Base ` P ) )
21 nn0re
 |-  ( F e. NN0 -> F e. RR )
22 21 rexrd
 |-  ( F e. NN0 -> F e. RR* )
23 22 3ad2ant3
 |-  ( ( R e. Ring /\ C e. K /\ F e. NN0 ) -> F e. RR* )
24 eqid
 |-  ( coe1 ` ( C .x. ( F .^ X ) ) ) = ( coe1 ` ( C .x. ( F .^ X ) ) )
25 1 3 19 8 24 deg1leb
 |-  ( ( ( C .x. ( F .^ X ) ) e. ( Base ` P ) /\ F e. RR* ) -> ( ( D ` ( C .x. ( F .^ X ) ) ) <_ F <-> A. x e. NN0 ( F < x -> ( ( coe1 ` ( C .x. ( F .^ X ) ) ) ` x ) = ( 0g ` R ) ) ) )
26 20 23 25 syl2anc
 |-  ( ( R e. Ring /\ C e. K /\ F e. NN0 ) -> ( ( D ` ( C .x. ( F .^ X ) ) ) <_ F <-> A. x e. NN0 ( F < x -> ( ( coe1 ` ( C .x. ( F .^ X ) ) ) ` x ) = ( 0g ` R ) ) ) )
27 18 26 mpbird
 |-  ( ( R e. Ring /\ C e. K /\ F e. NN0 ) -> ( D ` ( C .x. ( F .^ X ) ) ) <_ F )