Step |
Hyp |
Ref |
Expression |
1 |
|
deg1tm.d |
|- D = ( deg1 ` R ) |
2 |
|
deg1tm.k |
|- K = ( Base ` R ) |
3 |
|
deg1tm.p |
|- P = ( Poly1 ` R ) |
4 |
|
deg1tm.x |
|- X = ( var1 ` R ) |
5 |
|
deg1tm.m |
|- .x. = ( .s ` P ) |
6 |
|
deg1tm.n |
|- N = ( mulGrp ` P ) |
7 |
|
deg1tm.e |
|- .^ = ( .g ` N ) |
8 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
9 |
|
simpl1 |
|- ( ( ( R e. Ring /\ C e. K /\ F e. NN0 ) /\ ( x e. NN0 /\ F < x ) ) -> R e. Ring ) |
10 |
|
simpl2 |
|- ( ( ( R e. Ring /\ C e. K /\ F e. NN0 ) /\ ( x e. NN0 /\ F < x ) ) -> C e. K ) |
11 |
|
simpl3 |
|- ( ( ( R e. Ring /\ C e. K /\ F e. NN0 ) /\ ( x e. NN0 /\ F < x ) ) -> F e. NN0 ) |
12 |
|
simprl |
|- ( ( ( R e. Ring /\ C e. K /\ F e. NN0 ) /\ ( x e. NN0 /\ F < x ) ) -> x e. NN0 ) |
13 |
11
|
nn0red |
|- ( ( ( R e. Ring /\ C e. K /\ F e. NN0 ) /\ ( x e. NN0 /\ F < x ) ) -> F e. RR ) |
14 |
|
simprr |
|- ( ( ( R e. Ring /\ C e. K /\ F e. NN0 ) /\ ( x e. NN0 /\ F < x ) ) -> F < x ) |
15 |
13 14
|
ltned |
|- ( ( ( R e. Ring /\ C e. K /\ F e. NN0 ) /\ ( x e. NN0 /\ F < x ) ) -> F =/= x ) |
16 |
8 2 3 4 5 6 7 9 10 11 12 15
|
coe1tmfv2 |
|- ( ( ( R e. Ring /\ C e. K /\ F e. NN0 ) /\ ( x e. NN0 /\ F < x ) ) -> ( ( coe1 ` ( C .x. ( F .^ X ) ) ) ` x ) = ( 0g ` R ) ) |
17 |
16
|
expr |
|- ( ( ( R e. Ring /\ C e. K /\ F e. NN0 ) /\ x e. NN0 ) -> ( F < x -> ( ( coe1 ` ( C .x. ( F .^ X ) ) ) ` x ) = ( 0g ` R ) ) ) |
18 |
17
|
ralrimiva |
|- ( ( R e. Ring /\ C e. K /\ F e. NN0 ) -> A. x e. NN0 ( F < x -> ( ( coe1 ` ( C .x. ( F .^ X ) ) ) ` x ) = ( 0g ` R ) ) ) |
19 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
20 |
2 3 4 5 6 7 19
|
ply1tmcl |
|- ( ( R e. Ring /\ C e. K /\ F e. NN0 ) -> ( C .x. ( F .^ X ) ) e. ( Base ` P ) ) |
21 |
|
nn0re |
|- ( F e. NN0 -> F e. RR ) |
22 |
21
|
rexrd |
|- ( F e. NN0 -> F e. RR* ) |
23 |
22
|
3ad2ant3 |
|- ( ( R e. Ring /\ C e. K /\ F e. NN0 ) -> F e. RR* ) |
24 |
|
eqid |
|- ( coe1 ` ( C .x. ( F .^ X ) ) ) = ( coe1 ` ( C .x. ( F .^ X ) ) ) |
25 |
1 3 19 8 24
|
deg1leb |
|- ( ( ( C .x. ( F .^ X ) ) e. ( Base ` P ) /\ F e. RR* ) -> ( ( D ` ( C .x. ( F .^ X ) ) ) <_ F <-> A. x e. NN0 ( F < x -> ( ( coe1 ` ( C .x. ( F .^ X ) ) ) ` x ) = ( 0g ` R ) ) ) ) |
26 |
20 23 25
|
syl2anc |
|- ( ( R e. Ring /\ C e. K /\ F e. NN0 ) -> ( ( D ` ( C .x. ( F .^ X ) ) ) <_ F <-> A. x e. NN0 ( F < x -> ( ( coe1 ` ( C .x. ( F .^ X ) ) ) ` x ) = ( 0g ` R ) ) ) ) |
27 |
18 26
|
mpbird |
|- ( ( R e. Ring /\ C e. K /\ F e. NN0 ) -> ( D ` ( C .x. ( F .^ X ) ) ) <_ F ) |