Step |
Hyp |
Ref |
Expression |
1 |
|
deg1leb.d |
|- D = ( deg1 ` R ) |
2 |
|
deg1leb.p |
|- P = ( Poly1 ` R ) |
3 |
|
deg1leb.b |
|- B = ( Base ` P ) |
4 |
|
deg1leb.y |
|- .0. = ( 0g ` R ) |
5 |
|
deg1leb.a |
|- A = ( coe1 ` F ) |
6 |
1
|
deg1fval |
|- D = ( 1o mDeg R ) |
7 |
|
eqid |
|- ( 1o mPoly R ) = ( 1o mPoly R ) |
8 |
|
eqid |
|- ( PwSer1 ` R ) = ( PwSer1 ` R ) |
9 |
2 8 3
|
ply1bas |
|- B = ( Base ` ( 1o mPoly R ) ) |
10 |
|
psr1baslem |
|- ( NN0 ^m 1o ) = { y e. ( NN0 ^m 1o ) | ( `' y " NN ) e. Fin } |
11 |
|
tdeglem2 |
|- ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) = ( x e. ( NN0 ^m 1o ) |-> ( CCfld gsum x ) ) |
12 |
6 7 9 4 10 11
|
mdegval |
|- ( F e. B -> ( D ` F ) = sup ( ( ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) " ( F supp .0. ) ) , RR* , < ) ) |
13 |
4
|
fvexi |
|- .0. e. _V |
14 |
|
suppimacnv |
|- ( ( F e. B /\ .0. e. _V ) -> ( F supp .0. ) = ( `' F " ( _V \ { .0. } ) ) ) |
15 |
13 14
|
mpan2 |
|- ( F e. B -> ( F supp .0. ) = ( `' F " ( _V \ { .0. } ) ) ) |
16 |
15
|
imaeq2d |
|- ( F e. B -> ( ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) " ( F supp .0. ) ) = ( ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) " ( `' F " ( _V \ { .0. } ) ) ) ) |
17 |
|
imaco |
|- ( ( ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) o. `' F ) " ( _V \ { .0. } ) ) = ( ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) " ( `' F " ( _V \ { .0. } ) ) ) |
18 |
16 17
|
eqtr4di |
|- ( F e. B -> ( ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) " ( F supp .0. ) ) = ( ( ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) o. `' F ) " ( _V \ { .0. } ) ) ) |
19 |
|
df1o2 |
|- 1o = { (/) } |
20 |
|
nn0ex |
|- NN0 e. _V |
21 |
|
0ex |
|- (/) e. _V |
22 |
|
eqid |
|- ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) = ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) |
23 |
19 20 21 22
|
mapsncnv |
|- `' ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) = ( y e. NN0 |-> ( 1o X. { y } ) ) |
24 |
5 3 2 23
|
coe1fval2 |
|- ( F e. B -> A = ( F o. `' ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) ) ) |
25 |
24
|
cnveqd |
|- ( F e. B -> `' A = `' ( F o. `' ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) ) ) |
26 |
|
cnvco |
|- `' ( F o. `' ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) ) = ( `' `' ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) o. `' F ) |
27 |
|
cocnvcnv1 |
|- ( `' `' ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) o. `' F ) = ( ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) o. `' F ) |
28 |
26 27
|
eqtri |
|- `' ( F o. `' ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) ) = ( ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) o. `' F ) |
29 |
25 28
|
eqtr2di |
|- ( F e. B -> ( ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) o. `' F ) = `' A ) |
30 |
29
|
imaeq1d |
|- ( F e. B -> ( ( ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) o. `' F ) " ( _V \ { .0. } ) ) = ( `' A " ( _V \ { .0. } ) ) ) |
31 |
18 30
|
eqtrd |
|- ( F e. B -> ( ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) " ( F supp .0. ) ) = ( `' A " ( _V \ { .0. } ) ) ) |
32 |
5
|
fvexi |
|- A e. _V |
33 |
|
suppimacnv |
|- ( ( A e. _V /\ .0. e. _V ) -> ( A supp .0. ) = ( `' A " ( _V \ { .0. } ) ) ) |
34 |
33
|
eqcomd |
|- ( ( A e. _V /\ .0. e. _V ) -> ( `' A " ( _V \ { .0. } ) ) = ( A supp .0. ) ) |
35 |
32 13 34
|
mp2an |
|- ( `' A " ( _V \ { .0. } ) ) = ( A supp .0. ) |
36 |
31 35
|
eqtrdi |
|- ( F e. B -> ( ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) " ( F supp .0. ) ) = ( A supp .0. ) ) |
37 |
36
|
supeq1d |
|- ( F e. B -> sup ( ( ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) " ( F supp .0. ) ) , RR* , < ) = sup ( ( A supp .0. ) , RR* , < ) ) |
38 |
12 37
|
eqtrd |
|- ( F e. B -> ( D ` F ) = sup ( ( A supp .0. ) , RR* , < ) ) |